Extra-Credit Work

Math 264, Spring 2023

#1 Thoroughly describe and display a quantitative data set. Be sure to mention center, spread, shape, and possibly outliers; include boxplot and histogram.

We may make some observations: 1. Verbal and Math scores seem to be correlated and normally distributed. 2. Height and Shoe seem to be correlated and right-skewed 3. TV time and Computer time seem to be correlated and right-skewed 4. Dad Height and Mom Height seem to be correlated and normal 5. Dad Age and Mom Age seem to be correlated and normal 6. Exercise is right skewed 7. Siblings is right skewed 8. Age is right skewed 9. Credits is left skewed

newSurvey_Data<-read.csv("~/Downloads/newSurvey_Data.csv")
hist(newSurvey_Data$Math, main="Math Histogram")

hist(newSurvey_Data$Verbal, main="Verbal Histogram")

hist(newSurvey_Data$HT, main="Height Histogram")

hist(newSurvey_Data$Shoe, main="Shoe Histogram")

hist(newSurvey_Data$MomHT, main="Mom Height Histogram")

hist(newSurvey_Data$DadHT, main="Dad Height Histogram")

hist(newSurvey_Data$Credits, main="Credits Histogram")

hist(newSurvey_Data$Exer, main="Exercise Histogram")

hist(newSurvey_Data$Compu, main="Computer time Histogram")

hist(newSurvey_Data$TV, main="TV Time Histogram")

hist(newSurvey_Data$Sleep, main="Sleep Histogram")

hist(newSurvey_Data$Age, main="Age Histogram")

hist(newSurvey_Data$DadAge, main="Dad Age Histogram")

hist(newSurvey_Data$MomAge, main="Mom Age Histogram")

hist(newSurvey_Data$Sibs, main="Sibling Histogram")

hist(newSurvey_Data$Earned, main="Earned Histogram")

Note: In a true analysis, and if we were building a model for the pure goal of predicting rather than understanding the data, we may use PCA to combine those variables defined above that have a dependence relationship. Here is some sample code of using PCA for the Math and Verbal Scores:

#install.packages("factoextra")
library(factoextra)
## Loading required package: ggplot2
## Welcome! Want to learn more? See two factoextra-related books at https://goo.gl/ve3WBa
# Perform PCA
numerical_data<-data.frame(newSurvey_Data$Math, newSurvey_Data$Verbal)
data_normalized <- scale(numerical_data)
pca <- prcomp(data_normalized, scale = TRUE)

# summarize results
summary(pca)
## Importance of components:
##                           PC1    PC2
## Standard deviation     1.1711 0.7929
## Proportion of Variance 0.6857 0.3143
## Cumulative Proportion  0.6857 1.0000
# Create a biplot of the PCA results
fviz_pca_var(pca, col.var = "black")

fviz_eig(pca, addlabels = TRUE, ylim = c(0, 50))

from our summary, we see that the first principle component accounts for 68% of the total variance. this implies almost two-thirds of the data between verbal and math scores may be represented by just the first principal component.

# Perform PCA
numerical_data_2<-data.frame(newSurvey_Data$DadHT, newSurvey_Data$MomHT, newSurvey_Data$MomAge, newSurvey_Data$DadAge)
data_normalized_2 <- scale(numerical_data_2)
pca_2 <- prcomp(data_normalized_2, scale = TRUE)

# summarize results
summary(pca_2)
## Importance of components:
##                           PC1    PC2    PC3     PC4
## Standard deviation     1.3143 1.1298 0.8511 0.52133
## Proportion of Variance 0.4319 0.3191 0.1811 0.06795
## Cumulative Proportion  0.4319 0.7510 0.9321 1.00000
# Create a biplot of the PCA results
fviz_pca_var(pca_2, col.var = "black")

fviz_eig(pca_2, addlabels = TRUE, ylim = c(0, 50))

Given our PCA analysis, we would only need to use three dimensions for these variables, since we would capture 93.2% of the information by the first three components.

#2 Compare values of a quantitative variable for 2 or more groups. Be sure to compare centers, spreads, and shapes; include side-by-side boxplots or side-by-side histograms. Here we will compare values for Verbal and Math scores:

hist(newSurvey_Data$Math, main="Math Histogram")

hist(newSurvey_Data$Verbal, main="Verbal Histogram")

sd(newSurvey_Data$Math)
## [1] 71.8319
sd(newSurvey_Data$Verbal)
## [1] 73.3779
mean(newSurvey_Data$Math)
## [1] 611.6343
mean(newSurvey_Data$Verbal)
## [1] 592.8809

Our results above indicate the mean and spread for both scores is extremely close. Thus we decide to test whether or not they are equal using Hypothesis testing: Null Hypothesis: Means are equal. Alternative Hypothesis: Means are not equal.

We do not have any concrete reasoning to assume their standard deviations are equal, so I find it will be best to compare them using unpooled standard deviation:

math_sd = sd(newSurvey_Data$Math)
verbal_sd = sd(newSurvey_Data$Verbal)
math_m = mean(newSurvey_Data$Math)
verbal_m = mean(newSurvey_Data$Verbal)

t.test(newSurvey_Data$Math, newSurvey_Data$Verbal, var.equal = FALSE)
## 
##  Welch Two Sample t-test
## 
## data:  newSurvey_Data$Math and newSurvey_Data$Verbal
## t = 3.47, df = 719.67, p-value = 0.0005515
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##   8.14308 29.36384
## sample estimates:
## mean of x mean of y 
##  611.6343  592.8809

According to our hypothesis test, we reject the null

Now, we may also compare two categorical variables:

sex_fact <- ifelse(newSurvey_Data$Sex == "male", 1, 0)
smoke_fact <- ifelse(newSurvey_Data$Smoke == "yes", 1, 0)
mytable <- table(sex_fact, smoke_fact)
mytable
##         smoke_fact
## sex_fact   0   1
##        0 191  38
##        1 101  31

an interesting analysis would be for the relationship between smoking and gender: Null hypothesis: Proportions are equal Alt hypothesis: Proportions are not equal

successes <- c(sum((sex_fact)), sum(smoke_fact))
trials <- c(361, 361)

# Conduct proportion test
prop.test(successes, trials)
## 
##  2-sample test for equality of proportions with continuity correction
## 
## data:  successes out of trials
## X-squared = 26.502, df = 1, p-value = 2.632e-07
## alternative hypothesis: two.sided
## 95 percent confidence interval:
##  0.1076096 0.2414209
## sample estimates:
##    prop 1    prop 2 
## 0.3656510 0.1911357

Given our results, we fail to reject the null

We may continue this comparison using a Fisher Exact Test, testing for independence now: Null Hypothesis: Data is independent Alternative Hypothesis: Data is dependent

result <- fisher.test(mytable)
result
## 
##  Fisher's Exact Test for Count Data
## 
## data:  mytable
## p-value = 0.1265
## alternative hypothesis: true odds ratio is not equal to 1
## 95 percent confidence interval:
##  0.871056 2.712840
## sample estimates:
## odds ratio 
##   1.540883

Thus we fail to reject the null.

We may now extend our comparisons to multiple quantitative variables using ANOVA: We will use six means: Mom Height, Dad Height, and Height:

 result <- aov(newSurvey_Data$HT ~ newSurvey_Data$MomHT + newSurvey_Data$DadHT, data=newSurvey_Data)
result
## Call:
##    aov(formula = newSurvey_Data$HT ~ newSurvey_Data$MomHT + newSurvey_Data$DadHT, 
##     data = newSurvey_Data)
## 
## Terms:
##                 newSurvey_Data$MomHT newSurvey_Data$DadHT Residuals
## Sum of Squares               714.442              249.661  4510.568
## Deg. of Freedom                    1                    1       358
## 
## Residual standard error: 3.549557
## Estimated effects may be unbalanced

#3 Examine the relationship between 2 quantitative variables. Include a scatterplot, mention of direction, form, and strength; correlation and the regression line equation if the relationship appears linear; mention of outliers or influential observations if present.

with regards to other variables that may not be necessarily related but correlated, such as Exercise and Verbal scores, we may plot the two below:

x <- newSurvey_Data$Sleep
y <- newSurvey_Data$Verbal
plot(x, y, main = "Scatterplot of Sleep and Verbal Scores", 
     xlab = "Sleep", ylab = "Verbal Scores")

correlation <- cor(x, y)
model <- lm(y ~ x)
# Plot the regression line
abline(model, col = "red")

correlation
## [1] -0.008266078
model
## 
## Call:
## lm(formula = y ~ x)
## 
## Coefficients:
## (Intercept)            x  
##    595.9637      -0.4327

We have found from this analysis there is no correlation between exercise and verbal score.
Some notable observations: The data appears to be centered and normally joint distributed about (7 hours, 600 points). There are some outliers in all directions. The correlation is extremely low, indicating there is little relationship between the two variables.

for the Analysis below, We will begin by using one-hot encoding to encode some categorical variables:

library(tidyr)
library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
newSurvey_Data$Sex <- ifelse(newSurvey_Data$Sex == "male", 1, 0)
newSurvey_Data$Smoke <- ifelse(newSurvey_Data$Smoke == "yes", 1, 0)
newSurvey_Data$Pierced <- ifelse(newSurvey_Data$Pierced == "yes", 1, 0)
newSurvey_Data$Handed <- ifelse(newSurvey_Data$Handed == "right", 1, 0)
newSurvey_Data$Bkfst. <- ifelse(newSurvey_Data$Bkfst. == "yes", 1, 0)
newSurvey_Data$Cell <- ifelse(newSurvey_Data$Cell == "yes", 1, 0)
newSurvey_Data$Dec. <- ifelse(newSurvey_Data$Dec. == "yes", 1, 0)
newSurvey_Data$Live <- ifelse(newSurvey_Data$Live == "on", 1, 0)

# Reshape the data for Color
newSurvey_Data_Color <- newSurvey_Data %>%
  mutate(value = 1) %>%
  pivot_wider(names_from = Color, values_from = value, values_fill = 0)

# Reshape the data for Veg
newSurvey_Data_Eyes <- newSurvey_Data %>%
  mutate(value = 1) %>%
  pivot_wider(names_from = Eyes, values_from = value, values_fill = 0)

newSurvey_Data$Veg. <- ifelse(newSurvey_Data$Veg. == "no", 1,
                      ifelse(newSurvey_Data$Veg. == "some", 2, 3))



newSurvey_Data <- cbind(newSurvey_Data, newSurvey_Data_Color$black, newSurvey_Data_Color$blue, newSurvey_Data_Color$green, newSurvey_Data_Color$orange, newSurvey_Data_Color$red, newSurvey_Data_Color$pink, newSurvey_Data_Color$yellow, newSurvey_Data_Color$purple, newSurvey_Data_Eyes$cl, newSurvey_Data_Eyes$n, newSurvey_Data_Eyes$eg)

names(newSurvey_Data)[34:44] <- c("Black", "Blue", "Green", "Orange", "Red", "Pink", 
                                  "Yellow", "Purple", "Closed_Eyes", "Normal_Eyes", "Eyeglasses")

# Remove the original "Color" and "Eyes" columns
newSurvey_Data <- subset(newSurvey_Data, select = -c(Color, Eyes))
newSurvey_Data
##     Course Math Verbal HT Shoe Sex MomHT DadHT  WT Dec. Credits  Year Live Exer
## 1      200  420    500 76 11.0   1    66    75 165    1      16     3    0   45
## 2      200  650    580 65  7.5   0    69    69 125    1      14     2    1    0
## 3      200  550    590 60  6.0   0    61    69 105    1      18     2    1  120
## 4      200  570    540 66  8.0   0    62    71 117    1      16     1    1   30
## 5      200  650    700 62  7.5   0    63    70 107    0      17     1    1   30
## 6      200  630    590 66  8.5   0    64    72 145    1      17     2    1    0
## 7      200  640    560 68 10.0   0    65    65 175    1      15     2    1  120
## 8      200  510    510 64  8.0   0    64    70 133    1      13     3    1   40
## 9      200  590    520 75 12.0   1    69    71 175    0      14     2    1   45
## 10     200  610    600 66 10.5   1    64    65 160    0      14     2    1    0
## 11     200  520    710 63  7.5   0    61    69 125    1      16     2    0   30
## 12     200  550    600 67 10.0   1    64    73 160    1      13     3    0   10
## 13     200  620    480 65  9.0   0    67    71 143    0      18     2    1  180
## 14     200  550    560 62  7.5   0    63    69 125    0      13     2    1   30
## 15     200  550    480 68  9.0   1    65    73 175    1      17     2    1   25
## 16     200  640    550 71 13.0   1    63    68 214    0      13     3    0   90
## 17     200  490    650 64  8.0   0    61    73 116    1      17     3    0   60
## 18     200  620    560 71 11.5   1    63    70 153    0      14     2    1  120
## 19     200  480    520 65  8.5   0    63    73 135    0      16     2    0   60
## 20     200  640    650 70  9.5   1    66    69 165    1      14     2    0   90
## 21     200  620    620 75 15.0   1    67    73 315    0      14     2    0  120
## 22     200  550    530 66  7.0   1    66    67 120    0      17     2    0   30
## 23     200  580    500 64  8.0   0    61    70 155    0      13     2    1   20
## 24     200  600    760 64  6.0   0    69    70 115    0      14     2    1   15
## 25     200  650    675 62  6.5   0    56    66 105    1      15     4    0  120
## 26     200  600    300 65  7.5   0    69    70 215    1      17 other    0   30
## 27     200  610    640 68 11.5   1    64    70 150    1      16     2    0    0
## 28     200  630    640 66 10.0   0    65    70 137    0      15     2    0    3
## 29     200  670    640 68 11.0   1    61    70 155    0      16     2    1   60
## 30     200  640    670 65  8.5   0    60    69 123    1      15     2    1  120
## 31    1100  730    660 65  8.5   0    63    64 143    1      16     1    1   20
## 32     200  420    440 72 10.0   1    64    68 150    1      16     4    0   60
## 33     200  540    660 75 13.0   1    66    72 200    1      16     4    0   20
## 34     200  530    520 74 12.0   1    68    71 165    1      16     3    1   90
## 35     200  540    550 64  8.0   0    63    70 110    0      17     2    1    0
## 36     200  610    610 61  7.5   0    69    75 124    1      17     2    1   60
## 37     200  500    620 64  7.5   0    62    71 121    0      15     2    1  240
## 38     200  580    590 67  9.0   0    66    70 150    0      16     2    1   15
## 39     200  550    550 61  7.0   0    61    66 110    0      13     3    0  120
## 40     200  540    560 66  9.0   0    69    70 135    0      16     2    1   30
## 41     200  600    680 60  6.0   0    62    66 130    1      15     3    0    0
## 42     200  590    590 66  9.0   0    64    71 118    0      17     2    1  120
## 43     200  400    500 63  8.0   0    66    69 125    1      13     4    0   30
## 44     200  550    540 65  7.5   0    67    73 150    0      16     2    1   45
## 45     200  540    540 64  7.5   0    66    72 165    1      15     4    0   45
## 46     200  520    480 68  9.5   0    60    74 133    1      19     4    0   60
## 47     200  560    640 65  7.5   0    67    71 140    1      16     2    1   40
## 48     200  670    660 67  9.0   0    64    71 134    0      16     1    1   30
## 49     200  510    570 63  6.5   0    66    69 105    0      16     3    1    0
## 50     200  560    560 70 13.0   1    65    68 200    1      17     3    0   30
## 51     200  540    520 68  8.5   0    64    73 130    0      15     1    1   20
## 52    1000  620    540 65  6.0   0    65    73 130    1      17     1    1    0
## 53     200  600    600 70 11.0   1    66    68 180    1      16     2    0   45
## 54     200  550    550 68  9.0   0    63    69 140    0      16     3    0    0
## 55     200  560    560 67  9.5   0    67    75 145    0      14     2    1   60
## 56     200  540    580 68  9.0   1    65    67 135    0      16     2    1   45
## 57     200  550    550 68 10.0   0    71    71 160    1      15     2    1   60
## 58     200  700    780 69 10.5   0    62    75 145    1      18     3    0   50
## 59    1000  670    670 68 10.5   1    64    66 180    0      14     2    1   20
## 60    1000  610    630 66  9.0   0    63    65 114    1      14     2    1    0
## 61    1000  660    570 68  9.0   1    62    67 170    0      15     1    1   40
## 62    1000  620    590 64  9.0   0    62    72 124    0      16     2    1  120
## 63    1000  650    670 69 10.0   1    60    69 160    0      14     2    1   90
## 64    1000  590    610 75 13.0   1    66    74 204    1      13     4    0   25
## 65    1000  600    580 71 10.0   0    66    71 160    1      16     2    1    0
## 66    1000  450    650 68 10.0   1    62    66 225    1      13     3    0    0
## 67    1000  620    600 64  8.0   0    64    71 124    1      16     1    1   90
## 68    1000  510    590 64  7.0   0    63    71 130    0      15     2    1   45
## 69    1000  520    600 68  9.5   1    65    68 150    1      15     2    1   90
## 70    1000  580    660 63  8.5   0    64    69 135    1      17     3    0   30
## 71    1000  690    610 66  8.0   0    65    73 135    1      15     2    0   20
## 72    1000  500    600 65  9.5   0    68    70 152    1      16     3    0   45
## 73    1000  560    570 67  9.5   0    65    70 150    1      18     3    0   60
## 74    1000  580    700 61  6.0   0    65    70 104    1      14     2    1   30
## 75    1000  660    670 68 11.0   1    61    68 130    0      14     2    1   10
## 76    1000  670    620 66  8.5   0    64    74 146    1      16     3    0    0
## 77    1000  600    640 64  7.5   0    64    71 132    0      17     2    1    0
## 78    1100  600    620 70 11.0   1    67    71 145    0      16     2    0    0
## 79    1000  690    610 65 10.0   0    69    71 145    0      14     2    0   30
## 80    1000  640    720 69 10.0   0    71    74 135    1      17     1    1    0
## 81    1000  690    720 68 10.0   1    66    68 172    1      16     3    0  120
## 82    1000  650    600 63  6.5   0    61    69 112    0      14     2    1  180
## 83    1000  600    680 64  7.0   0    67    69 110    0      17     1    0   30
## 84    1000  710    700 62  8.0   0    61    70 105    0      16     2    0    0
## 85    1000  500    600 68  8.5   0    68    70 125    0      14     3    1    0
## 86    1000  670    590 67  8.5   0    63    71 118    1      14     1    1   30
## 87    1000  710    640 65  9.5   1    63    68 160    0      15     1    1   45
## 88    1000  600    600 62  6.0   0    63    68 155    0      16     3    0   30
## 89    1000  580    500 72 11.5   1    65    73 195    0      16     2    1   60
## 90    1000  570    570 67  8.0   0    68    72 140    0      16     2    0    0
## 91    1000  780    670 72 12.0   1    66    70 145    1      15     2    1    0
## 92    1000  620    480 71 11.5   1    65    67 145    0      13     3    0    0
## 93    1000  690    660 67  9.0   0    69    72 130    1      17     3    0   60
## 94    1000  590    620 69  8.5   0    70    70 145    0      15     2    0    0
## 95    1000  600    800 66  9.5   1    65    67 170    0      17     2    1   60
## 96    1000  550    550 72 10.5   1    64    69 250    0       7 other    0   30
## 97    1000  650    600 67  8.0   0    67    71 133    1      16     2    1  180
## 98    1000  560    540 68 10.5   1    66    67 155    1      16     3    0  120
## 99    1000  580    590 69 10.0   1    65    72 158    1      15     2    1   90
## 100   1000  520    500 76 14.0   1    67    68 185    1      13     3    0    0
## 101   1000  450    450 74 12.0   1    68    74 222    1      16     3    0   60
## 102   1000  600    590 66  6.0   0    67    73 105    0      15     2    0    0
## 103   1000  800    660 69 12.0   1    64    77 175    1      15     4    0   30
## 104   1000  620    640 62  7.0   0    64    72  98    0      15     2    1    0
## 105   1000  570    580 71 11.0   1    65    68 190    1      16     4    0   60
## 106   1000  580    590 62  8.0   0    61    70 130    0      17     2    0   75
## 107   1000  590    580 65  7.5   0    67    67 112    0      16     2    0   20
## 108   1000  580    520 71 10.5   1    61    71 175    1      14     2    0   60
## 109   1000  610    690 62  5.5   0    63    69 113    0      14     2    0   45
## 110   1000  700    550 75 16.0   1    69    74 233    1      18     1    1   45
## 111   1000  670    550 64  6.0   0    59    72 117    1      17     3    0    0
## 112   1000  620    500 66  8.5   0    68    68 129    1      14     2    1   30
## 113   1000  620    580 66 10.0   0    64    66 138    1      16     2    1   70
## 114   1000  700    520 76 13.0   1    66    71 180    1      14     2    1   15
## 115   1000  680    480 71 12.0   1    61    73 180    1      14     1    0   30
## 116   1000  640    540 64  7.0   0    63    65 126    0      16     1    0    0
## 117   1000  660    710 74 11.0   1    64    74 167    1      17     4    0   30
## 118   1000  770    590 67 10.0   0    65    73 169    1      15     2    1  120
## 119   1000  600    560 63  8.5   0    63    72 115    0      16     2    1   20
## 120   1000  650    520 60  6.5   0    66    70 130    1      16     3    0   15
## 121   1000  700    790 69  6.0   0    63    66 115    1      17     2    0   45
## 122    200  530    540 66  8.0   0    62    70 140    0      14     2    0    0
## 123   1000  550    610 60  5.0   0    64    71 110    1      16     4    0    0
## 124   1000  630    500 63  9.0   0    62    68 130    0      15     3    0    0
## 125   1000  600    500 70 11.0   1    64    64 190    1      13     3    0    0
## 126   1000  530    550 64  8.5   0    64    70 132    1      16     2    0   30
## 127   1000  540    610 64  6.5   0    68    69 113    0      16     2    0  120
## 128   1000  620    520 70  9.0   0    66    76 165    0      14     2    0   30
## 129    200  610    700 63  6.0   0    68    72  86    1      16     3    1   60
## 130   1000  630    590 68 10.5   1    65    66 155    0      15     3    0  120
## 131    200  680    590 66  8.5   1    63    64 115    1      13     3    0    0
## 132   1000  600    600 63  8.0   0    63    68 130    0      14     2    1   80
## 133   1000  720    690 72 13.0   1    64    70 300    0      13     2    1   20
## 134   1000  750    710 64  7.0   0    63    69 115    1      18     2    1    0
## 135   1000  620    620 66 10.0   0    64    69 150    0      16     2    1   35
## 136   1000  620    600 63  7.0   0    62    65 120    1      16     4    0    0
## 137   1000  660    620 72 12.0   1    64    68 150    1      16     2    0    0
## 138   1000  650    600 63  6.5   0    63    66 145    1      15     2    1   50
## 139   1000  640    620 72 11.5   1    64    72 164    0      16     2    0    0
## 140   1000  660    560 61  7.5   0    63    66 110    0      17     2    1   30
## 141   1000  670    620 65  9.5   0    69    73 120    0      14     2    1  100
## 142    200  500    500 66  8.0   0    63    69 112    0      14     2    0    0
## 143   1000  740    660 70 11.0   1    67    70 143    0      16     3    0   40
## 144   1000  570    500 68 10.5   1    64    71 140    0      16     3    0   20
## 145    200  690    650 74 13.0   1    68    76 170    1      17     3    0  120
## 146   1000  630    630 64  8.0   0    67    70 130    1      15     1    1    0
## 147   1000  640    630 62  8.0   0    68    67 135    1      16     3    0    0
## 148   1000  620    560 69  8.5   0    67    72 160    0      17     2    1   20
## 149   1000  500    600 64  8.5   1    63    72 135    1      16     2    0   20
## 150   1000  700    700 64  6.0   0    62    64 112    1      13     3    0    0
## 151   1000  580    620 66  9.0   0    63    70 129    0      15     2    1   30
## 152   1000  680    650 64  7.0   0    60    68 110    0      14     2    1    0
## 153   1000  680    580 63  7.5   0    65    74 110    1      17     2    1   45
## 154   1000  670    600 67  9.0   1    62    66 140    0      17     2    1   20
## 155   1000  740    660 63  6.0   0    64    71 120    1      17     2    1   90
## 156   1000  550    560 69  8.5   0    69    69 135    1      14     3    0   60
## 157   1000  610    710 65  7.5   0    67    67 130    0      17     2    1   20
## 158    200  710    680 70 11.0   0    68    72 145    0      17     1    1   50
## 159   1000  650    630 69 10.0   0    69    71 174    1      18     2    0   30
## 160   1000  690    740 71  8.5   0    66    77 163    1      17     3    0   60
## 161   1000  650    530 68  8.5   0    63    72 140    0      15     2    0   35
## 162   1000  650    650 64  5.0   0    62    72 105    0      14     2    0    0
## 163    200  540    560 64  6.0   0    66    75 150    0      16     2    1    2
## 164    200  650    620 63  8.0   0    64    65 120    0      14     2    1   30
## 165    200  610    670 66  7.0   0    63    73 136    0      16     3    0  190
## 166    200  660    650 62  8.0   0    64    64 108    1      16     2    1   30
## 167    200  700    720 69  9.0   1    65    68 125    0      13     1    1   30
## 168    200  570    560 64  7.0   0    64    75 125    1      15     2    1   30
## 169    200  580    560 67  9.0   1    63    72 170    1      16     3    0   45
## 170    200  590    630 64  6.5   0    67    71 112    0      16     2    1    0
## 171    200  650    540 61  5.5   0    62    68 115    0      17     2    1   70
## 172    200  530    460 61  7.0   0    59    72 123    1      15     2    0  100
## 173    200  540    500 66  8.5   0    60    70 114    1      12     1    0   30
## 174    200  550    700 68  9.5   1    62    70 165    1      16     3    0   60
## 175    200  600    510 60  6.5   0    64    72 110    1      16     1    1   30
## 176    200  560    560 62  6.0   0    61    65  95    0      16     2    1   20
## 177    200  700    680 73 11.5   1    66    72 152    1      13     1    1  120
## 178    200  580    480 70 10.0   0    68    76 150    1      17     2    1   40
## 179    200  540    520 66 10.0   0    65    72 210    1      14     2    0    0
## 180    200  680    720 66  9.0   0    62    74 175    0      13     2    0   60
## 181    200  730    790 64  7.5   0    65    68 105    1      17     2    1   30
## 182    200  600    650 62  8.0   0    64    74 215    0      16     2    1    0
## 183    200  580    590 68  9.5   0    66    70 160    1      14     2    1   90
## 184    200  520    590 70 11.0   0    64    76 126    1      17     2    1   30
## 185    200  600    700 73 11.5   1    66    69 161    1      16     4    0    0
## 186    200  700    550 70  7.0   0    68    75 155    1      16     4    0   60
## 187    200  580    580 67  8.5   1    60    68 140    1      14     2    0   30
## 188    200  700    610 66  9.0   0    67    67 135    1      15     2    0  120
## 189    200  620    580 73 13.0   1    65    70 180    1      12     2    1   75
## 190    200  540    520 64  6.5   0    62    69 117    0      16     2    1   30
## 191    200  680    670 60  6.5   0    60    72 120    0      17     1    1   60
## 192    200  550    535 63  8.0   0    63    69 130    0      16     2    1   90
## 193    200  650    640 69 12.0   1    62    72 165    0      17     2    1    0
## 194    200  590    600 65  8.5   0    61    70 135    0      17     2    1    0
## 195    200  580    500 62  7.0   0    66    73 175    0      17     2    0   60
## 196    200  650    620 61  6.5   0    61    70 120    0      17     3    0  180
## 197    200  620    580 73 12.0   1    65    71 160    0      14     2    1    0
## 198    200  690    610 75 12.0   1    66    75 190    1      16     2    1   75
## 199    200  580    570 69 11.0   0    66    76 136    0      14     2    1   60
## 200    200  570    570 65  7.5   1    62    66 135    0      17     2    1   60
## 201    200  500    570 62  7.5   0    66    64 118    0      16     2    1   90
## 202    200  610    610 64  6.0   0    65    69 125    1      17     2    1   60
## 203    200  520    600 73 12.0   1    64    68 160    1      13     3    0   20
## 204    200  610    520 73 14.0   1    65    73 162    1      16     2    1   10
## 205    200  590    580 69  8.5   0    69    68 140    0      17     2    1    0
## 206    200  600    620 64  8.0   0    63    72 135    0      16     2    1   40
## 207    200  560    550 64  8.0   0    68    69 134    0      16     2    1   45
## 208    200  550    530 70  9.5   0    66    72 128    1      17     3    0   45
## 209    200  580    660 68  8.0   0    65    74 124    1      16     2    1    0
## 210    200  550    500 67  8.0   0    65    70 150    1       4 other    0    0
## 211    200  620    640 63  8.0   0    59    74 134    1      14     2    0    0
## 212    200  540    510 69  9.0   0    64    74 155    0      16     2    1    0
## 213    200  660    600 71 11.0   1    64    71 173    0      17     2    1  120
## 214    200  500    650 71 13.0   1    66    68 196    1      17     3    1   45
## 215    200  610    600 72 12.0   1    63    73 165    1      14     2    1  180
## 216    200  540    470 64  8.0   0    62    70 105    1      12     2    1    0
## 217    200  450    550 68  9.5   0    66    65 150    1      16     3    0    0
## 218    200  640    610 66  8.0   0    64    74 140    1      15     2    1   45
## 219    200  680    570 68  9.5   0    66    70 138    1      17     2    1  180
## 220    200  490    560 73 13.0   1    68    72 276    1      17 other    0  150
## 221    200  570    590 65  8.0   0    63    70 135    0      15     2    1    0
## 222    200  550    500 71  8.5   0    67    76 135    0      14     2    0    0
## 223    200  600    610 64  7.0   0    65    70 126    0      16     2    0    0
## 224    200  550    550 60  8.0   0    62    64 116    1      16     4    0    0
## 225    200  630    550 68 11.0   1    62    72 150    0      16     2    0  180
## 226    200  560    640 67 10.0   1    61    68 160    1      16     2    1   45
## 227    200  400    400 65  7.0   0    67    71 120    1      16     3    0   30
## 228    200  710    580 61  7.0   0    61    66 103    1      12     2    1   30
## 229    200  500    650 64  7.0   0    65    70 125    1      16     3    0   90
## 230    200  600    500 66  8.5   0    63    73 140    0      16     3    0    0
## 231   1000  550    620 64  9.0   0    64    73 118    0      16     2    1    0
## 232   1000  560    500 64  9.0   0    70    70 128    0      16     3    0    0
## 233   1000  640    590 64  8.0   0    60    65 130    0      14     2    0   30
## 234   1000  630    600 65  9.0   0    66    66 128    1      18     2    1    0
## 235   1000  730    600 70 10.0   1    64    69 135    1      17     2    1    0
## 236   1000  600    600 73 11.5   1    67    73 142    0      17     2    1   30
## 237   1000  550    600 68 11.0   1    63    67 155    0      13     2    1  120
## 238   1000  600    520 63  7.5   0    61    69 132    1      14     2    0   20
## 239   1000  620    630 70  9.0   1    63    69 127    1      13     3    1    0
## 240   1000  620    620 73 11.0   0    68    75 215    1      17     2    0    0
## 241   1000  500    510 70 10.0   0    65    74 175    0      17     2    1   10
## 242   1000  580    560 62  7.0   0    63    70 110    0      15     2    0   20
## 243   1000  660    600 63  6.5   0    62    70 125    1      17     1    1   45
## 244   1000  670    660 66  9.0   0    64    72 160    1      19     3    0   60
## 245   1000  610    460 74 12.0   1    66    70 197    0      15     2    1   15
## 246   1000  600    510 65  6.5   0    64    68 135    1      15     3    0   90
## 247   1000  590    640 68 10.0   0    64    71 141    0      17     2    0  180
## 248   1000  660    700 71 12.0   1    67    68 160    1      16     3    0   45
## 249    200  500    600 67  7.5   0    65    76 138    1      12     4    1    0
## 250   1000  750    760 69  8.5   0    67    74 155    0      16     2    1   20
## 251   1000  680    790 66  8.5   0    66    70 135    0      19     2    1   30
## 252   1000  600    660 61  6.0   0    64    71 111    1      14     1    1    0
## 253   1000  620    540 63  7.5   0    62    72 116    1      14     2    1    0
## 254   1000  500    510 65  8.0   0    64    68 123    1      14 other    0   30
## 255   1000  650    630 62  6.0   0    63    68  98    1      17     3    0   20
## 256   1000  740    750 63  8.0   0    62    67 130    0      16     3    1    0
## 257   1000  650    700 67 10.0   1    63    68 137    1      17     2    1   15
## 258   1000  670    580 71 11.0   1    63    71 158    0      14     2    1   75
## 259   1000  600    600 66  8.5   0    62    75 128    1      11 other    0   60
## 260   1000  680    720 66  9.0   0    65    72 140    1      18     3    1   60
## 261   1000  650    590 79 15.0   1    66    73 200    1      16     2    1   60
## 262   1000  650    540 74 11.5   1    70    72 167    1      14     2    1  120
## 263   1000  570    580 66  8.0   0    67    68 150    1      16     4    0   30
## 264   1000  680    520 67  9.5   1    65    69 135    1      16     3    0    0
## 265   1000  720    680 64  7.5   0    60    65 115    0      16     2    1   75
## 266   1000  650    600 72 11.5   1    67    66 195    0      14     4    0   50
## 267   1000  740    780 66  8.0   0    66    70 135    1      17 other    0    0
## 268   1000  670    540 68  9.5   1    66    67 140    1      15     2    1    0
## 269   1000  720    570 69 10.5   1    64    68 157    1      13     3    1   60
## 270   1000  720    680 72 11.0   1    64    71 161    0      15     3    1    0
## 271   1000  620    620 69 10.0   1    60    63 185    0      14     2    1   60
## 272   1000  680    540 69 11.0   1    66    67 172    1      16     3    0    0
## 273   1000  610    580 67  8.0   0    67    70 120    1      17     1    1   90
## 274   1000  650    650 68  9.5   1    64    71 140    0      13     2    0    0
## 275   1000  580    650 63  6.0   0    62    67 120    0      16     2    1   60
## 276   1000  750    600 72 13.0   1    66    70 190    1      12     3    0   60
## 277   1000  800    750 68 11.0   1    62    67 143    1      16     3    0   60
## 278   1000  630    520 72 10.5   1    67    75 150    1      16     2    1   30
## 279   1000  630    550 64  6.5   0    63    70 125    0      14     2    1   70
## 280   1000  750    720 64  6.5   0    63    70 100    1      15     1    1    0
## 281   1000  590    630 70 10.5   1    68    69 190    1      15     4    0   10
## 282   1000  480    550 64  8.5   0    66    67 141    0      16     2    0   30
## 283   1000  570    540 73 10.0   1    65    70 190    1      16     3    0   70
## 284   1000  690    690 68 10.0   0    68    73 125    1      16     1    1   45
## 285   1000  660    540 70 10.5   1    63    71 145    1      13     3    0   60
## 286   1000  610    590 76 11.5   1    64    73 165    0      14     2    1    0
## 287   1000  700    510 67  9.0   0    67    71 140    0      17     2    1  120
## 288   1000  590    590 64  8.5   0    68    70 125    0      16     2    1  120
## 289   1000  550    530 74 13.0   1    72    74 210    0      17     2    1   90
## 290   1000  650    550 71 11.0   1    68    69 184    1      16     2    0  120
## 291   1000  550    510 63  7.5   0    63    69 110    1      13     4    0   25
## 292   1000  520    680 66  8.5   0    66    69 120    1      14     2    0   10
## 293   1000  590    600 67 10.0   1    59    72 120    1      14     3    0    0
## 294   1000  660    520 66  8.5   0    70    71 125    0      16     2    0   30
## 295   1000  520    600 73 10.5   1    65    75 170    0      17     3    0    0
## 296   1100  650    540 69  9.0   1    60    67 130    0      17     2    0   80
## 297   1100  600    500 66  9.0   0    68    68 140    1      17     2    0   70
## 298   1100  800    620 74 13.0   1    63    71 235    0      17     2    1   65
## 299    200  590    560 73 11.0   1    66    69 175    0      16     2    0    0
## 300   1100  630    550 65  6.5   0    61    68 125    1      16     2    0   60
## 301   1100  670    640 63  8.0   0    62    69 112    0      16     2    1   30
## 302   1100  550    500 67 10.5   1    65    65 150    0      16     3    0   60
## 303   1100  650    530 69 11.0   1    63    71 150    0      14     1    1  120
## 304   1100  550    500 73 12.0   1    66    72 185    0      13     2    0   20
## 305   1100  560    540 64  8.0   0    63    66 130    1      15     2    1  150
## 306   1000  590    590 76 12.0   1    64    71 192    1      14     2    0  120
## 307   1100  690    580 72 11.0   1    67    68 170    0      16     2    1   30
## 308   1100  700    580 69  9.0   0    63    74 135    0      17     2    1  150
## 309   1100  580    590 66  9.0   0    67    75 130    0      16     2    0    0
## 310   1100  720    680 72 12.0   1    66    70 200    1      13     3    0   30
## 311   1100  580    600 72 11.0   1    63    69 190    1      18 other    0    0
## 312   1100  700    680 64 10.0   1    56    64 165    1      16     2    1   60
## 313    200  530    420 67  8.5   0    63    75 135    1      13     1    0    0
## 314    200  630    640 69 10.0   1    67    73 145    1      17 other    0    0
## 315   1100  720    530 72 13.0   1    68    70 250    1      16     2    1    0
## 316   1100  660    600 72 11.0   1    64    67 195    1      16     4    0    0
## 317   1100  680    500 71 13.0   1    71    78 167    0      13     2    0   20
## 318   1100  760    530 71 10.5   1    69    74 160    0      16     2    1   60
## 319   1100  750    450 71 11.5   1    65    72 170    0      17     1    0   30
## 320   1100  640    540 70 11.0   1    64    67 168    1      16     2    1   60
## 321   1100  500    450 72 10.0   1    65    72 260    1      10     1    0    0
## 322   1100  550    700 64  8.0   0    62    72 130    0      16     2    1   30
## 323    200  620    600 67  9.5   0    68    72 140    0      17     2    1    0
## 324    200  560    550 63  8.5   0    59    70 115    0      16     2    1   30
## 325    200  550    730 67 10.0   0    66    68 137    0      18     2    1   75
## 326    200  620    630 63  8.0   0    66    66 115    1      17     2    1  120
## 327    200  630    670 63  9.0   0    63    68 130    1      17     2    1   75
## 328    200  600    580 69 11.0   1    60    73 125    0      15     2    0    0
## 329    200  660    620 64  8.0   0    64    72 114    1      14     2    1  115
## 330    200  660    580 65  8.5   0    68    73 148    0      17     2    1   30
## 331    200  550    530 64  9.0   0    65    66 140    0      16     2    1   65
## 332    200  650    590 71 12.0   1    66    69 175    0      14     2    0  120
## 333    200  770    340 71  9.0   1    62    66 115    1      18     2    1    5
## 334    200  630    640 61  7.0   0    62    68 106    1      14     2    1   60
## 335    200  560    640 63  7.0   0    64    67 140    0      16     2    1   20
## 336    200  610    740 64  7.5   0    63    61 101    0      17     2    1   50
## 337    200  620    580 64  8.5   0    63    71 155    0      17     2    1    0
## 338    200  670    520 79 15.0   1    71    80 192    0      13     3    0    0
## 339    200  740    590 63  8.0   0    60    67 133    1      13     2    0   30
## 340    200  550    560 62  6.5   0    64    67 115    0      17     2    0   30
## 341    200  460    580 61  6.5   0    62    70 105    0      13     3    0    0
## 342    200  650    550 70 10.5   1    62    70 145    0      16     2    1    0
## 343    200  560    650 62  6.5   0    63    67 125    0      13     2    0    0
## 344    200  600    600 63  7.5   0    65    66 120    0      16     1    0    0
## 345    200  570    540 70 10.5   1    67    68 151    0      16     2    1   30
## 346    200  720    600 62  7.5   0    63    70 125    1      16     2    0   20
## 347    200  510    620 63  8.0   0    62    66 120    1      16     3    1    0
## 348    200  600    590 64  9.0   0    67    70 140    0      16     2    0   40
## 349    200  600    620 64  8.0   0    67    71 123    1      16     4    0   20
## 350    200  520    600 63  6.5   0    66    69 120    0      14     3    1    0
## 351    200  540    470 72 10.5   1    67    71 200    1      11 other    1    0
## 352    200  600    580 68  8.0   0    68    71 145    1      17     2    1   60
## 353    200  450    600 62  7.5   0    63    67 140    1      14     3    0  120
## 354    200  610    590 66  8.5   1    60    71 115    0      14     3    0   60
## 355    200  580    560 61  7.0   0    60    70 120    1      16     2    1   60
## 356    200  600    660 65  8.5   0    67    70 138    1      14     3    0   20
## 357    200  620    420 66 10.0   0    66    71 111    0      14     2    1  120
## 358    200  690    630 61  6.5   0    59    71 104    0      16     2    1   20
## 359    200  720    540 63  8.5   0    67    67 130    1      15     3    0   10
## 360    200  700    700 63  7.5   1    66    72 125    0      18     2    1  150
## 361   1100  790    690 72 11.5   1    63    69 175    1      17     3    0   20
##     Compu  TV Phone Sleep   Age MomAge DadAge Sibs Smoke Pierced Earned Cash
## 1   120.0   0    10   6.5 20.08     55     55    1     0       1      6    0
## 2    40.0   0    90   7.5 19.08     45     51    2     0       1      0    3
## 3    60.0  60    60   7.0 19.67     54     58    0     0       1      3   25
## 4   180.0  52    15   7.5 18.50     49     47    1     0       1      2   10
## 5   120.0  30    60   4.0 18.50     40     44    2     0       1      0    0
## 6    20.0  60    30   7.0 19.75     47     47    2     0       1      3   15
## 7    60.0  45   115   8.5 19.17     43     43    1     0       1      0   40
## 8   120.0  30    45   8.5 20.25     50     51    1     0       1      4    0
## 9    90.0   0    15   7.0 19.67     46     47    1     0       0      1   70
## 10   60.0   0    20   9.0 19.42     57     58    3     0       0      2   45
## 11   20.0   0    45   7.0 19.17     45     46    1     0       1      2    0
## 12   20.0   0    10   2.0 22.25     40     45    0     1       0      4   15
## 13  100.0  25    30   7.0 19.42     49     50    1     0       1      2    4
## 14   90.0  30    60   7.0 19.08     44     46    1     0       1      2   20
## 15   10.0  10     0   4.0 18.58     50     54    5     0       0      0    0
## 16    0.0  60    15   5.5 20.17     53     58    2     0       0      9   12
## 17   30.0  60    60   7.0 20.83     53     50    1     1       1      0    9
## 18   80.0   0   100   8.0 19.83     52     53    1     0       0      3   60
## 19   60.0  90    20   8.0 19.42     38     39    1     0       1      1   10
## 20    0.0  25    60   6.5 19.33     46     47    1     1       1      4   65
## 21   40.0  60    10   7.0 19.58     45     47    1     0       0      3  100
## 22  120.0  45     0   7.0 19.67     60     60    1     0       0      1   40
## 23  120.0   0    10   8.0 19.17     53     52    1     0       1      0   20
## 24   60.0  20    10   6.5 19.50     45     50    2     0       1      2    7
## 25    0.0 120    40   7.5 25.50     55     55    1     1       1     15   75
## 26   60.0  30    60   7.0 31.75     51     52    0     0       1      3  130
## 27  120.0 120    45   6.0 19.83     47     47    1     0       1      1   20
## 28   15.0   5     5   7.0 19.33     53     52    1     0       1      0  115
## 29    0.0  10     5   7.0 19.17     34     34    1     0       0      5   10
## 30  120.0   0    60   7.0 19.58     51     53    1     0       1      2   10
## 31   30.0  20   120   7.5 18.33     50     53    1     0       1      3    3
## 32  180.0  45   120   8.0 24.75     54     55    1     0       1      5  120
## 33   30.0  60    10   9.0 21.58     51     53    1     0       0      3    8
## 34  120.0  60    30   9.0 20.33     47     48    1     0       1      2   40
## 35   90.0  30    10   6.0 19.75     50     55    4     0       1      3    0
## 36  200.0   0    90   8.5 19.25     52     59    0     0       1      1   10
## 37    0.0   0    45   9.0 19.92     47     52    3     0       1      0   25
## 38   60.0  15   120   8.0 20.00     55     56    1     0       1      3   15
## 39    0.0  30    10   7.5 21.50     48     50    2     1       1      3  420
## 40  120.0  30    75   7.0 19.08     48     57    1     0       1      5    5
## 41    5.0 120    45   9.0 20.92     49     54    2     0       1      1   10
## 42   60.0   0    15   8.5 19.75     49     50    1     0       1      1    5
## 43   10.0 120    60   7.0 21.58     44     45    2     1       1      2   12
## 44  120.0  60    25   9.0 19.42     45     51    3     0       0      5   25
## 45   60.0 180   100   9.5 21.17     51     55    5     0       1      9   45
## 46    0.0 120    10   2.5 20.08     55     57    3     0       1      1    0
## 47   90.0  20    30   6.5 19.58     44     45    1     1       1      2   20
## 48   60.0   0    30   9.0 18.42     50     51    3     0       1      2   17
## 49  120.0  45    60   6.5 20.50     50     52    1     1       1      1    8
## 50  180.0  30     0   6.0 19.58     45     43    2     0       0      2   25
## 51  120.0 120    90   7.5 19.17     46     45    2     0       1      3   15
## 52   20.0  30    30   8.0 17.92     48     50    1     0       1      1  200
## 53    0.0  90     0   9.5 19.25     53     52    1     0       0      7   40
## 54   60.0 120    30   8.0 20.42     47     50    2     0       1      3   17
## 55   20.0   0    10   5.0 19.17     46     48    0     0       1      3    0
## 56   60.0  90    80   8.0 20.25     47     50    2     0       0      0    2
## 57   20.0 240    60   6.0 18.92     52     53    8     0       1      0   10
## 58  400.0   0     3   5.0 19.83     54     57    1     0       1      6    9
## 59   45.0   0    15   7.5 19.25     47     46    1     0       0      2    3
## 60    0.0   0    60   7.0 19.50     43     51    1     0       1      0   40
## 61   60.0   0    15   8.0 18.17     54     55    6     0       0      1   27
## 62   30.0  45    30   8.0 19.25     52     49    4     0       1      1   10
## 63  180.0  60    25   7.5 19.08     50     55    5     0       0      1  280
## 64   45.0  90     5   8.5 21.83     49     49    5     1       0      6   60
## 65  300.0  60     0   7.0 19.58     49     53    3     0       1      3   60
## 66   90.0 120    60   7.0 24.92     55     60    2     0       0     26   15
## 67  120.0  45    30   7.0 18.75     45     51    2     0       0      0   13
## 68  120.0   0    15   7.5 19.83     56     61    5     0       1      2   20
## 69  120.0  60    60   7.0 19.50     40     42    2     0       0      1    0
## 70   10.0  20    20   6.5 24.42     44     49    2     1       1     11    8
## 71   45.0   0    15   6.5 19.08     53     55    2     0       1      1   21
## 72   70.0  90     5   8.0 20.00     45     46    1     0       1      3   16
## 73    0.0  30     0   8.5 20.67     46     58    1     0       1      4    5
## 74   25.0  80    20   7.0 18.83     51     50    2     0       1      2   45
## 75   30.0   0    30   8.0 19.00     50     49    1     0       0      2   40
## 76   45.0   0     4   8.0 20.67     44     44    2     0       1     20   50
## 77   60.0   0    30   6.0 19.42     52     56    2     0       1      2   15
## 78   15.0  15     5   8.0 20.17     45     50    1     0       0      5   10
## 79   50.0  60     0   7.5 19.58     46     47    1     0       0      1   80
## 80   60.0   0     4   8.0 18.00     52     50    1     1       1      2   15
## 81   90.0  30    30   8.0 20.50     49     53    1     0       0      1   13
## 82   60.0  60    60   6.0 19.33     50     52    1     0       1      4   18
## 83   65.0  40    20   6.5 17.92     50     52    1     0       0      0   40
## 84   30.0   0    30   8.5 19.42     61     63    1     1       1      7  120
## 85    0.0   0    40   7.5 20.67     49     49    6     0       1      1    0
## 86  120.0  60    30   7.0 18.42     49     49    0     1       1      0   40
## 87   60.0  70    25   8.0 18.58     54     52    1     0       0      2   20
## 88   30.0  60    60   7.0 20.25     47     47    2     0       1      3   35
## 89   30.0  60     5   7.5 19.75     48     56    3     0       0      4    0
## 90    0.0   0    60   6.0 19.00     49     56    3     1       1      1   25
## 91   75.0  15    60   9.5 19.83     51     53    1     0       0      2   45
## 92  120.0  60    15   7.0 21.67     44     47    1     0       0      3  120
## 93   45.0  60    10   6.0 20.17     48     46    1     0       1      2    2
## 94   15.0   0    25   7.0 19.67     52     53    4     0       1      2   30
## 95   30.0  10     5   9.0 20.00     53     55    3     0       1      2    0
## 96  360.0   0    60   7.0 28.25     52     51    1     0       0     24   20
## 97  120.0   0    60   5.0 19.75     52     52    2     0       1      1    0
## 98   20.0  30    60   7.0 21.08     54     56    0     1       1     11    0
## 99   45.0 120    25   7.0 20.17     53     55    2     0       0      2    2
## 100  60.0  30    60   5.0 22.08     52     54    4     0       0      1    2
## 101 120.0   0     0   8.0 34.42     68     66    1     1       0     10    0
## 102  45.0  45    60   5.5 19.08     50     51    1     0       1      0    0
## 103  15.0   0     0   7.5 21.58     51     50    1     0       0      4   23
## 104  45.0   0   130   6.5 19.75     47     57    1     1       0      2   40
## 105  60.0 120    15   8.0 23.50     58     78    1     0       1      4   35
## 106   0.0 120    30   8.0 19.33     53     53    2     1       1      2    0
## 107  20.0 120   120   9.0 19.33     44     52    2     0       1      1   10
## 108 240.0 240    30   8.0 19.92     46     49    1     1       1      8    2
## 109  20.0   0    25   7.0 18.42     48     57    1     0       1      1   48
## 110  45.0   0    15   7.5 18.50     47     52    1     0       1      1   33
## 111  20.0  60    45  10.5 20.08     52     51    1     0       1      1    0
## 112  60.0   0    15   7.0 19.25     46     47    1     0       1      2    3
## 113 120.0  45    15   8.5 18.67     42     44    2     0       1      1    9
## 114  10.0  15    30   8.0 19.08     43     43    2     0       0      0  100
## 115  15.0  30     0   7.0 19.67     48     48    2     1       1      1    5
## 116  30.0  60     0   6.0 17.92     42     51    1     0       0      0    1
## 117  60.0  60    30   8.0 21.25     53     57    1     0       0      3   50
## 118  60.0  30    30  11.0 19.33     50     55    1     0       1      3    3
## 119  60.0  60    25   8.5 19.00     48     46    2     1       1      4   10
## 120 180.0   0    45   7.0 19.92     47     52    3     0       1      2   11
## 121  10.0   0    30   6.5 21.17     41     48    5     1       1     25    2
## 122   0.0  15    60   9.0 19.50     43     42    1     0       1      0   20
## 123  20.0  20     0   8.0 20.83     46     46    3     0       1      3   20
## 124   0.0   0    60   6.5 20.50     43     42    1     1       1      0    7
## 125 300.0  30    10   5.0 23.00     58     62    3     1       0     12    5
## 126 120.0 120   100   0.5 19.33     43     48    2     0       1      2    7
## 127  30.0 180    30   9.0 19.33     49     49    2     0       1      1    4
## 128  20.0  90    60   8.0 19.25     46     46    1     1       1      0   15
## 129  60.0  60    30   8.0 20.25     48     48    2     0       1      0   75
## 130 120.0  60    60   8.0 20.00     46     51    1     0       0      1    1
## 131  90.0  45     0   9.0 20.83     50     51    1     0       0      3  150
## 132 120.0 120    30   8.0 19.50     48     62    1     0       1      1  200
## 133 240.0  60    10   8.0 18.67     43     50    3     0       0      2  120
## 134  60.0  90    10   8.0 19.17     50     54    0     0       1      2    0
## 135  45.0  20     5   8.5 19.00     60     58    2     0       1      1   26
## 136  60.0  45    20   7.5 21.92     46     46    3     0       0      3    0
## 137  30.0 120    20   8.0 18.92     40     45    4     1       0      6   45
## 138  20.0  45    15   8.0 19.92     53     53    2     0       1      1   60
## 139  60.0 270    60   7.0 19.00     54     71    6     1       0      1   10
## 140  60.0   0     5   5.5 19.33     46     48    2     0       1      2    0
## 141  25.0   0    20  10.5 19.42     47     47    2     0       1      2   10
## 142 120.0   0    20   8.0 19.25     48     54    2     1       1      1   24
## 143  15.0 120     5   7.5 20.42     44     45    2     0       0      5   20
## 144   0.0  45    45   7.5 20.00     43     44    2     1       0      5   20
## 145  20.0  15    30   8.0 20.58     47     48    2     1       0      1   10
## 146  60.0   0    10   7.5 18.50     44     46    2     0       1      2    0
## 147  60.0  60     5   6.0 20.58     52     55    3     0       1      6   10
## 148  90.0 120    30   8.0 19.33     48     48    3     0       1      3    5
## 149  20.0  20    10   7.0 19.58     50     60    1     1       0      3    4
## 150  30.0   0    60   7.0 20.25     48     60    0     1       1      0   10
## 151 120.0   0    45   8.0 19.08     41     43    2     1       1      2   30
## 152  60.0 120    20   8.0 19.25     36     38    3     0       1      4    0
## 153  30.0   0    20   5.0 19.08     54     54    1     0       0      3   14
## 154 120.0  60    15   8.0 19.00     49     53    1     0       1      1    3
## 155  60.0  60    10   6.5 19.25     53     56    1     0       1      4    0
## 156 120.0 120    45   8.0 19.58     49     50    5     0       1      4    1
## 157  20.0  30    45   7.0 19.42     46     73    5     0       1      2   45
## 158  60.0   0     0   8.5 18.75     47     45    2     0       1      1   20
## 159  20.0  15     5   7.0 19.17     47     51    1     0       1      2   16
## 160  15.0 180    30   7.0 20.17     40     48    1     0       1      2   20
## 161  15.0  45    70   7.5 19.17     50     50    2     0       0      1   46
## 162  10.0  30     5   6.0 19.58     42     47    1     0       1      3    5
## 163  80.0   0    25   7.5 19.42     47     51    2     0       1      2    0
## 164  45.0   0    30   6.5 19.58     51     54    1     0       1      2   11
## 165  20.0   0    15   4.5 20.75     53     55    1     0       1      3   40
## 166  45.0  30    60   9.0 19.92     45     44    1     0       1      4    5
## 167 120.0  10    60   5.0 21.25     50     56    2     0       0      3   34
## 168 120.0  30    30   7.5 19.83     48     49    3     0       1      3   10
## 169  20.0  60    10   9.0 20.83     49     51    9     0       1      3    8
## 170  20.0 120    35   8.0 19.00     50     51    2     0       1      1    7
## 171 300.0  45    20   5.5 19.67     48     48    2     0       1      2    6
## 172  30.0  80    20   8.5 19.83     57     63    2     0       1      3    1
## 173  15.0   0    60   6.5 20.17     43     43    1     0       1      0   40
## 174   0.0   0     0   3.0 20.75     45     46    2     0       0      3   10
## 175  60.0  60    60   6.0 18.58     42     42    3     0       1      0   30
## 176  60.0  10    30   7.0 19.50     56     62    0     0       1      2   20
## 177 240.0  45    20   7.0 18.83     50     50    2     0       0      0   40
## 178  80.0 120    10   6.0 19.17     45     41    1     0       1      1    1
## 179  60.0 120    60   7.5 19.42     51     52    5     0       1      6    0
## 180  10.0  60    15   7.0 19.25     52     51    1     0       1      0   20
## 181  60.0   0    30   6.0 20.17     48     49    1     0       1      1    8
## 182 120.0 180    30   9.0 19.17     53     55    3     0       1      3    2
## 183  90.0 180    30   7.5 19.00     49     54    2     0       1      1   20
## 184  60.0 120    25   7.5 19.50     46     50    1     0       1      0   12
## 185  20.0  10     5   8.0 22.17     47     49    6     1       0      1   31
## 186  10.0 120    60   6.0 22.67     47     52    2     0       1     17   16
## 187  20.0  60    30   5.0 19.83     44     44    1     0       0      5   35
## 188   0.0  60    30   5.0 19.25     49     52    1     1       1      1   23
## 189   0.0   0   120   8.5 19.42     46     47    1     0       0     12   50
## 190  45.0  60    30   6.5 19.33     52     52    2     1       1      1   15
## 191  15.0  60    90   9.5 18.08     42     48    2     1       1      2   15
## 192  30.0   0    60   6.5 19.25     46     45    1     0       1      5    0
## 193  60.0   0    30   8.0 19.00     47     47    2     0       0      0   60
## 194  60.0 120    60   6.0 18.00     45     55    1     0       1      0   10
## 195  30.0 120   120  11.5 19.25     50     50    1     0       1      8   60
## 196  60.0   5    50   5.0 19.92     48     46    4     0       1      1   45
## 197  25.0  60    39   8.0 19.42     50     52    1     0       0      2    7
## 198  90.0  30    15   6.5 19.25     50     50    2     0       0      6   30
## 199 120.0   0   120   9.0 19.00     47     49    1     0       1      1    0
## 200  30.0  75    15   8.5 19.33     48     51    1     0       0      2    0
## 201 180.0   0    30   8.0 19.58     44     44    0     0       1      1   10
## 202  60.0   0    30   6.5 19.58     50     50    1     0       1      1   20
## 203 180.0  60    90   7.5 19.92     61     75    4     0       0      5   16
## 204  60.0  15    45   8.0 20.00     56     56    2     1       1      3    0
## 205  60.0  30    30   5.0 19.00     50     50    0     0       1      2    6
## 206  15.0  90    15   8.5 19.58     54     59    1     1       1      2   20
## 207  60.0   0    35   7.0 19.75     50     50    3     0       1      0    0
## 208  60.0 120    30   7.0 20.83     53     54    0     1       1      5   20
## 209 300.0 120     0   8.0 19.08     35     36    1     0       1      3   50
## 210   3.0   2     1   7.0 23.83     56     58    6     0       1     13   22
## 211  60.0  60    20   7.5 19.33     44     48    2     0       1      2   16
## 212 100.0 120    60   9.0 19.17     52     54    1     0       1      1    0
## 213  50.0   0     0   9.0 19.83     51     53    2     0       0      6   50
## 214  60.0   0    10   8.0 20.25     55     57    2     0       0      2   15
## 215  60.0  15    10   7.5 19.92     45     45    1     0       0      4   10
## 216 360.0 120    60   7.5 19.33     46     45    4     0       1      1   12
## 217 300.0   0    15   7.0 20.00     45     55    2     0       1      1   20
## 218 120.0  60     0   6.0 19.58     51     51    2     0       1      4    1
## 219  30.0  20    20   6.0 19.08     43     44    2     0       0      2   17
## 220 120.0  30    30   8.0 22.17     52     57    3     0       1      6    0
## 221 240.0  90    90   5.5 20.00     53     54    1     0       1      1    0
## 222  15.0  30     5   7.0 19.58     48     50    1     0       1      6   35
## 223  20.0  30    30   7.0 19.33     55     64    3     1       1      2    9
## 224 350.0  60    30   6.0 21.75     42     41    4     0       1     10   11
## 225  15.0  30     0   7.5 19.50     42     58    4     0       0      4    0
## 226  60.0   0    20   8.0 19.50     42     44    2     1       0      7    0
## 227  20.0  60   120   6.0 20.67     45     46    1     0       1      2    3
## 228   1.5   1     1   7.5 19.58     45     47    2     0       1      2    5
## 229   0.0  60    70   8.5 20.08     52     49    1     0       1      2   10
## 230  15.0   0    30   6.0 20.83     45     45    1     0       1      8   13
## 231 180.0 120    10   8.5 19.17     52     53    2     0       1      1    5
## 232   0.0   0    60   5.0 20.33     43     44    1     1       1      9    5
## 233  60.0 180    30   8.5 19.83     47     47    1     1       1      1   50
## 234  60.0   0    30   6.5 20.17     44     45    3     0       1      0    6
## 235 120.0  10    30   8.0 19.58     51     54    3     0       0      0   15
## 236 180.0 120    20   8.5 19.67     49     50    2     1       0      3    0
## 237 240.0 120    30   6.5 19.58     44     48    2     0       0      5   20
## 238   0.0  15    60   8.0 19.33     43     45    1     0       1      2   11
## 239  70.0   0    40   6.5 21.17     47     50    1     0       0      3    7
## 240   0.0  60    15   6.0 19.83     51     53    2     0       1      2   75
## 241  60.0  80    60   8.0 18.92     50     49    5     0       1      1   62
## 242  30.0  30    60   8.0 19.25     42     44    2     0       1      1   15
## 243 200.0 300    15   7.5 18.17     52     52    2     0       1     10   40
## 244 400.0  60    45   8.0 20.33     40     41    7     0       0      3   15
## 245 120.0 120    30   4.5 19.42     42     48    2     0       0      2   25
## 246  15.0  90    20   8.0 20.00     45     45    0     0       1      3    5
## 247 120.0  60     0   6.5 19.17     47     54    2     0       0      2   57
## 248  60.0 120    15   7.5 20.25     43     49    1     0       0      4   25
## 249  10.0 120    30   7.5 21.25     46     48    2     1       1      6   30
## 250  40.0  60     0   7.5 19.25     54     54    2     0       1      1    5
## 251  60.0   0    30   6.0 18.92     43     46    3     0       0      0    1
## 252 120.0  30    30   7.5 18.50     51     48    1     0       1      2   50
## 253  60.0  60    30   7.0 19.42     52     49    1     0       1      2    0
## 254  30.0  60    60   7.0 22.33     48     48    3     0       1      4   10
## 255  40.0   0    30   8.0 20.50     47     47    3     0       1      1   10
## 256  40.0   0    10   6.0 19.75     57     59    1     1       1      1   20
## 257  60.0 120     0   8.0 19.58     55     60    1     0       0      1   10
## 258  45.0  30    45   8.0 19.92     41     42    2     0       0      2   24
## 259  45.0   0    30   7.0 22.75     52     55    2     0       1      3   60
## 260  15.0   0    20   7.0 19.92     63     60    1     0       1      2   15
## 261  60.0 240    20   8.0 19.25     47     48    3     0       0      3   13
## 262 248.0  30    45   6.0 19.08     46     52    2     0       0      2    0
## 263  90.0   0    30   7.0 21.25     44     45    5     0       1      1    0
## 264 300.0   0    20   8.0 20.25     51     53    1     0       0      5   20
## 265 180.0  15    20   7.0 19.17     48     49    3     0       1      2   41
## 266  30.0 180    40   4.5 21.75     43     46    1     1       1      9   14
## 267  60.0   5   140   8.0 23.50     54     52    2     0       1      1    3
## 268 240.0 120    30   7.5 19.83     47     48    1     0       0      1   20
## 269 240.0 120    20   5.0 20.25     49     59    1     0       1      4    0
## 270 300.0   0    20   7.0 20.75     55     56    3     0       0      1   20
## 271 180.0 240     0   6.5 19.42     46     53    2     0       0      4   30
## 272 120.0   0    15   8.0 20.67     46     54    1     0       1      6   30
## 273  60.0  30   240   7.5 17.92     49     53    1     0       1      0   28
## 274  30.0  45    30   6.5 19.25     49     51    1     1       1      3    0
## 275  60.0  30    10   7.0 19.58     42     40    2     0       1      2   25
## 276 120.0   1   400   8.0 20.42     46     52    1     0       0      0    5
## 277 120.0  20    45   5.0 20.00     43     47    1     0       1      2    0
## 278  45.0 120    30   7.0 19.42     45     50    2     1       1      4   40
## 279 120.0 120    30   8.5 19.50     44     52    1     0       1      0    5
## 280 180.0   0   120   8.5 18.83     45     45    0     0       1      0    0
## 281 120.0  60     0   7.0 21.33     45     43    4     0       0      2    0
## 282  60.0   0    25   1.5 19.75     37     43    5     0       1      4    8
## 283   0.0  45    15   6.0 20.08     45     53    2     0       0      1  200
## 284 180.0   0    80   9.0 18.50     45     45    1     0       1      1   30
## 285 240.0   0    25   6.0 20.50     52     53    3     0       0      6   75
## 286 180.0  60     5   4.5 19.75     54     65    2     1       0      6   70
## 287  45.0  30    80   8.0 19.00     52     52    2     0       0      2   15
## 288  60.0  30     0   6.5 19.08     48     48    1     0       1      3    0
## 289 240.0 120    10   6.0 19.33     46     48    1     0       0      2   10
## 290  60.0   0     2  11.0 19.67     54     59    3     0       0      3    1
## 291  20.0  60    10   8.5 21.17     45     49    1     0       1      7    2
## 292  30.0   0    60   6.0 19.08     48     56    2     1       1      1    4
## 293  15.0   5    60   5.0 22.58     46     50    1     1       1     11   30
## 294  90.0  90    40   6.5 19.50     48     56    2     0       1      1    5
## 295  30.0  30    30   4.5 20.67     48     51    1     1       0      2   20
## 296 240.0 200   200   6.0 18.58     52     47    2     0       0      5   26
## 297  60.0  60    10   7.3 17.67     45     58    2     0       1      0   60
## 298 100.0 200    10   6.0 19.75     50     54    1     0       0      5    0
## 299  60.0  60   120   6.5 20.42     51     52    3     1       0      5    0
## 300  20.0  60    30   6.0 20.00     49     51    3     0       1      0   40
## 301 120.0  30    30   6.0 18.92     39     51    0     1       1      2   50
## 302  30.0   0    30   6.5 20.67     48     57    1     0       0     11   26
## 303 120.0  40    10   6.0 19.08     52     53    1     1       0      4    5
## 304  30.0  45    20   5.0 19.33     48     50    2     1       0      1    4
## 305  30.0  45    25   8.0 19.42     47     48    2     0       0      0    0
## 306 120.0 240     5  10.0 19.83     53     55    2     0       0      0  350
## 307 240.0 180    15   8.0 19.00     41     42    3     0       0      3    5
## 308  60.0  45    30   5.5 19.00     51     56    4     0       1      1    4
## 309   0.0 300    30   6.0 19.25     47     49    2     1       1      0    5
## 310 120.0   0    15   4.0 21.67     50     52    2     1       0      6    0
## 311   0.0 120    15   8.0 21.92     51     50    1     1       0     11   10
## 312 180.0 180    15   6.5 28.42     53     62    1     0       0     69   35
## 313 100.0  30    15   7.0 20.17     48     56    0     1       1     20   22
## 314  30.0   0    20   7.5 22.92     52     53    2     0       0      6    6
## 315 420.0 420    45   6.5 19.50     43     44    2     0       1     10    7
## 316   5.0 240    60   7.0 21.58     48     50    3     0       1     55  162
## 317 180.0 120     0   6.5 19.92     50     50    5     1       0      3    8
## 318 120.0  60   180  12.0 20.25     50     46    6     0       1     11   18
## 319  60.0  60    10   8.0 18.33     44     49    0     0       0      0   20
## 320 180.0 180    20   8.0 19.08     46     51    2     0       0      4    0
## 321 180.0 180    60   7.0 23.42     45     45    1     0       0     10   15
## 322  30.0  60    30   6.0 19.67     40     42    3     0       0      2   20
## 323 240.0   0    10   5.0 19.33     42     53    3     0       1      1   35
## 324 300.0  30    90   6.5 19.58     52     56    2     0       1      0   60
## 325 360.0   0    50   5.0 19.50     49     48    2     0       1      0    0
## 326  60.0 120    60   3.5 19.00     48     52    0     0       1      0   10
## 327 200.0 100    70   5.0 19.50     55     49    4     0       1      3   15
## 328  45.0   5     0   7.5 19.83     48     49    2     0       0      8   45
## 329  30.0 180     0   7.0 19.67     50     50    2     0       1      1   15
## 330 120.0   0    20   5.5 18.92     43     48    1     0       1      3   40
## 331  30.0  15    40   8.0 19.00     52     54    2     0       0      1  200
## 332  40.0  60    15   7.0 18.92     48     45    2     0       1      2  310
## 333 140.0   0    20   5.5 19.25     50     53    2     0       0      1    8
## 334 120.0 120    30   7.5 19.92     45     46    1     0       1      1   15
## 335  20.0  30    60   4.0 19.58     49     50    2     0       0      1   50
## 336 180.0  10    40   7.5 19.42     52     51    1     0       1      1    0
## 337  60.0  60    25   7.5 19.67     49     50    1     0       1      2   25
## 338 120.0 120    15   7.5 20.67     49     49    2     1       1     15    9
## 339  10.0   0    15   7.0 19.33     50     51    5     0       1      3    2
## 340 120.0 120    20   7.5 19.75     46     52    1     0       1      4   30
## 341  20.0  30    60   7.0 20.50     51     52    2     0       1      1   15
## 342  60.0   0    90   7.0 19.00     53     56    1     0       0      2   12
## 343 120.0  30     0   6.5 19.17     45     50    2     0       1      0   25
## 344   0.0  60    60   7.0 20.25     42     45    2     1       1      4   18
## 345 120.0   0    45   6.0 19.83     50     52    1     0       0      4    6
## 346  30.0  60    25   5.5 19.83     48     46    2     0       1      1   16
## 347  30.0 120    45   5.0 20.67     52     56    1     0       0      5    7
## 348  60.0 120    30   7.5 19.83     41     44    0     0       1      3    5
## 349  60.0 360    60   7.5 22.25     52     51    3     0       1      5   35
## 350 270.0  60    60   7.5 20.92     44     50    1     0       1      2    3
## 351  10.0  15    30   7.0 23.83     48     48    1     0       0      3  200
## 352  90.0  60    15   7.5 19.83     48     55    2     0       1      4   20
## 353  10.0  60    10   8.5 20.42     48     49    0     0       1      0    6
## 354 360.0  60     0   9.0 20.25     50     73    3     0       0      2   90
## 355 200.0  60    45   8.0 20.00     45     46    1     1       1      4   10
## 356  10.0  20    30   6.0 22.00     52     53    1     0       1      4   10
## 357  67.0   0    20   7.5 19.92     47     54    2     1       1      2    7
## 358 180.0  90    20   7.5 19.42     50     47    1     0       1      4    5
## 359  20.0 120    15   7.0 20.25     50     51    1     1       1      1   10
## 360  20.0   5    20   6.0 19.58     40     42    1     0       1      3   10
## 361   5.0  60    20   6.0 20.25     43     56    1     1       1     10  300
##     Handed Bkfst. Veg. Cell Random Black Blue Green Orange Red Pink Yellow
## 1        1      0    1    0     13     1    0     0      0   0    0      0
## 2        1      1    2    1     13     0    0     0      0   0    0      0
## 3        1      0    2    1     14     0    1     0      0   0    0      0
## 4        1      0    1    1     17     0    1     0      0   0    0      0
## 5        1      1    1    1      7     0    0     0      0   0    0      0
## 6        1      0    1    0     15     0    1     0      0   0    0      0
## 7        1      1    1    1      6     0    1     0      0   0    0      0
## 8        0      1    1    1     12     0    0     0      0   0    0      1
## 9        1      0    1    1     12     0    1     0      0   0    0      0
## 10       1      0    1    1      5     0    1     0      0   0    0      0
## 11       1      1    2    1     17     0    0     1      0   0    0      0
## 12       1      1    2    1     17     0    0     1      0   0    0      0
## 13       1      1    1    1      7     0    0     0      0   0    1      0
## 14       1      1    1    1      1     0    0     0      0   0    0      1
## 15       1      0    1    0     10     0    1     0      0   0    0      0
## 16       1      0    1    1     18     0    0     0      0   0    0      1
## 17       1      1    2    1     11     0    0     0      0   0    0      0
## 18       1      1    1    1      8     0    1     0      0   0    0      0
## 19       1      1    1    1     17     0    1     0      0   0    0      0
## 20       1      0    1    1      2     0    1     0      0   0    0      0
## 21       1      1    1    1     18     0    1     0      0   0    0      0
## 22       1      0    1    0     11     0    0     0      0   1    0      0
## 23       1      0    1    1     12     0    0     0      0   0    0      0
## 24       1      0    1    1     13     0    1     0      0   0    0      0
## 25       1      1    1    0     13     0    0     0      0   0    1      0
## 26       1      1    1    1     17     0    1     0      0   0    0      0
## 27       1      0    1    1     18     0    1     0      0   0    0      0
## 28       1      1    1    1      4     0    1     0      0   0    0      0
## 29       1      1    1    1     18     0    0     0      0   0    0      1
## 30       1      1    1    1     13     0    0     0      0   0    1      0
## 31       1      1    1    1     15     1    0     0      0   0    0      0
## 32       0      0    1    1      3     0    0     0      0   1    0      0
## 33       1      1    1    0     17     0    1     0      0   0    0      0
## 34       1      0    1    1      3     0    1     0      0   0    0      0
## 35       1      0    2    0     11     1    0     0      0   0    0      0
## 36       1      0    1    1     13     0    0     0      0   0    0      0
## 37       1      1    1    1      5     0    0     0      0   0    1      0
## 38       1      1    1    1     14     0    0     0      0   0    1      0
## 39       1      1    2    0     15     0    0     1      0   0    0      0
## 40       1      1    1    1      7     0    1     0      0   0    0      0
## 41       1      1    2    0     13     0    1     0      0   0    0      0
## 42       1      1    1    1      7     0    0     0      1   0    0      0
## 43       1      1    1    1      5     0    0     0      0   0    1      0
## 44       1      1    1    1     12     0    1     0      0   0    0      0
## 45       1      1    2    1     13     0    0     0      0   0    0      0
## 46       1      0    1    0      8     0    0     0      0   0    1      0
## 47       1      1    1    1     16     0    0     0      0   0    0      0
## 48       1      1    1    0     13     0    1     0      0   0    0      0
## 49       1      0    1    1     17     0    0     0      0   1    0      0
## 50       1      1    1    0     15     0    1     0      0   0    0      0
## 51       1      0    1    1     11     0    0     0      0   0    0      0
## 52       1      1    1    1      3     0    0     0      1   0    0      0
## 53       1      1    3    0      5     0    0     0      0   0    1      0
## 54       1      1    1    1     14     0    0     0      0   0    0      0
## 55       0      0    1    1     17     0    0     0      0   1    0      0
## 56       0      0    1    0     12     0    1     0      0   0    0      0
## 57       1      1    1    1     19     0    1     0      0   0    0      0
## 58       1      1    1    1      6     0    0     0      0   0    0      1
## 59       0      0    1    1     15     0    0     1      0   0    0      0
## 60       1      1    3    1      8     0    1     0      0   0    0      0
## 61       1      1    1    0     12     0    0     0      0   1    0      0
## 62       1      1    1    1      4     0    0     0      0   0    0      0
## 63       1      0    1    1     17     0    0     0      0   1    0      0
## 64       1      0    1    1     18     0    1     0      0   0    0      0
## 65       1      0    3    1     19     0    1     0      0   0    0      0
## 66       1      1    1    1      8     0    1     0      0   0    0      0
## 67       1      0    1    1     19     1    0     0      0   0    0      0
## 68       1      0    1    0     17     0    1     0      0   0    0      0
## 69       1      1    1    0      7     0    1     0      0   0    0      0
## 70       1      1    3    1      7     0    0     1      0   0    0      0
## 71       1      0    1    1      9     0    1     0      0   0    0      0
## 72       1      0    1    1     20     0    1     0      0   0    0      0
## 73       1      1    1    0     17     0    0     1      0   0    0      0
## 74       1      1    1    1     19     0    1     0      0   0    0      0
## 75       1      1    1    0      4     0    0     1      0   0    0      0
## 76       1      1    1    0     12     0    0     0      0   1    0      0
## 77       1      1    1    1     20     0    0     0      0   1    0      0
## 78       1      1    1    1     15     0    1     0      0   0    0      0
## 79       1      1    1    1     13     1    0     0      0   0    0      0
## 80       1      1    1    0      7     0    0     0      0   0    0      0
## 81       1      1    1    1     16     0    1     0      0   0    0      0
## 82       1      1    1    1     14     0    0     1      0   0    0      0
## 83       1      0    1    1     11     0    1     0      0   0    0      0
## 84       1      0    1    1      4     0    0     0      0   1    0      0
## 85       1      1    1    1      3     0    1     0      0   0    0      0
## 86       1      0    1    1      8     0    0     0      0   0    1      0
## 87       1      1    1    1     14     0    1     0      0   0    0      0
## 88       1      0    1    1     17     0    0     0      0   0    1      0
## 89       1      1    1    1     17     0    0     1      0   0    0      0
## 90       1      1    1    1      3     0    0     1      0   0    0      0
## 91       1      0    1    0     18     0    1     0      0   0    0      0
## 92       1      0    1    1     15     0    1     0      0   0    0      0
## 93       1      1    1    1      4     0    0     1      0   0    0      0
## 94       1      1    1    1     17     0    0     1      0   0    0      0
## 95       1      1    1    1     17     0    1     0      0   0    0      0
## 96       1      1    3    1      8     1    0     0      0   0    0      0
## 97       1      1    2    1      3     0    1     0      0   0    0      0
## 98       1      0    1    1      8     0    1     0      0   0    0      0
## 99       1      1    1    0     10     0    1     0      0   0    0      0
## 100      0      1    1    1     11     0    1     0      0   0    0      0
## 101      1      1    1    0     19     1    0     0      0   0    0      0
## 102      1      0    1    1      3     0    1     0      0   0    0      0
## 103      1      1    1    0     20     0    0     1      0   0    0      0
## 104      1      1    1    1     17     0    0     0      0   0    1      0
## 105      1      1    1    1     11     0    1     0      0   0    0      0
## 106      1      1    1    1     11     0    0     1      0   0    0      0
## 107      1      1    1    1      2     0    1     0      0   0    0      0
## 108      1      0    3    1     13     0    1     0      0   0    0      0
## 109      1      1    3    1      3     0    0     1      0   0    0      0
## 110      0      0    1    1     16     0    1     0      0   0    0      0
## 111      1      1    2    0     18     0    0     0      0   0    0      0
## 112      1      1    1    1      6     0    1     0      0   0    0      0
## 113      1      1    1    1     13     0    1     0      0   0    0      0
## 114      0      1    1    1     12     0    1     0      0   0    0      0
## 115      1      0    1    0     17     0    1     0      0   0    0      0
## 116      1      0    1    0      7     0    1     0      0   0    0      0
## 117      0      0    1    0     13     0    0     1      0   0    0      0
## 118      1      0    1    1      4     0    1     0      0   0    0      0
## 119      1      0    1    1      6     0    0     0      0   1    0      0
## 120      1      0    1    1      3     0    1     0      0   0    0      0
## 121      1      1    1    1      5     0    0     1      0   0    0      0
## 122      1      1    1    1      6     0    0     0      0   0    0      0
## 123      1      1    1    0     13     0    1     0      0   0    0      0
## 124      0      0    1    1      7     0    1     0      0   0    0      0
## 125      1      1    1    1     11     1    0     0      0   0    0      0
## 126      1      0    2    1     16     0    1     0      0   0    0      0
## 127      1      0    1    1      9     1    0     0      0   0    0      0
## 128      1      1    1    1     16     0    1     0      0   0    0      0
## 129      1      1    2    1      4     0    0     0      0   0    0      0
## 130      1      0    1    0      1     0    0     1      0   0    0      0
## 131      1      0    1    1     13     0    1     0      0   0    0      0
## 132      1      1    1    1      7     0    0     0      0   0    1      0
## 133      1      1    1    1     12     0    1     0      0   0    0      0
## 134      1      1    1    1     15     0    0     0      0   0    0      0
## 135      1      1    2    1     18     0    1     0      0   0    0      0
## 136      1      1    1    1     17     0    1     0      0   0    0      0
## 137      1      1    1    1     17     0    1     0      0   0    0      0
## 138      1      1    1    1      7     0    1     0      0   0    0      0
## 139      1      0    1    1     13     0    0     1      0   0    0      0
## 140      1      1    1    0      2     0    0     0      0   0    0      0
## 141      1      0    1    1     13     0    0     0      0   1    0      0
## 142      1      1    1    1      3     0    0     1      0   0    0      0
## 143      1      0    1    1      3     0    0     0      1   0    0      0
## 144      1      0    1    0      5     0    0     0      1   0    0      0
## 145      1      1    2    1     12     0    1     0      0   0    0      0
## 146      0      1    1    1     17     0    0     0      0   0    1      0
## 147      1      1    1    0     10     0    0     0      0   1    0      0
## 148      1      1    1    1     19     0    0     0      0   0    1      0
## 149      1      1    1    1      3     0    1     0      0   0    0      0
## 150      1      0    1    1      6     0    0     0      0   1    0      0
## 151      1      0    1    1     18     0    1     0      0   0    0      0
## 152      1      1    1    1     17     0    1     0      0   0    0      0
## 153      1      1    1    1      3     0    0     1      0   0    0      0
## 154      1      1    3    1     13     0    1     0      0   0    0      0
## 155      1      0    1    0     15     0    1     0      0   0    0      0
## 156      1      1    1    1     17     0    1     0      0   0    0      0
## 157      1      1    1    0     17     0    0     0      0   0    0      0
## 158      1      1    1    0     17     0    1     0      0   0    0      0
## 159      0      0    1    1     17     0    0     0      0   0    0      1
## 160      1      0    1    1     12     0    1     0      0   0    0      0
## 161      1      0    1    1     11     0    0     0      0   1    0      0
## 162      0      1    1    1     12     0    0     0      1   0    0      0
## 163      1      0    1    1      7     0    0     0      0   0    0      1
## 164      1      1    1    1      7     0    0     0      0   0    0      0
## 165      1      1    1    1     16     0    0     0      0   0    0      0
## 166      1      1    1    1     20     0    0     0      0   0    0      0
## 167      1      1    1    1      7     0    1     0      0   0    0      0
## 168      1      1    1    1     17     0    1     0      0   0    0      0
## 169      1      0    1    1     20     0    1     0      0   0    0      0
## 170      1      1    1    1     12     0    1     0      0   0    0      0
## 171      1      1    2    0     13     0    1     0      0   0    0      0
## 172      0      1    1    1      7     0    0     0      0   0    0      0
## 173      1      1    1    1     17     0    0     0      0   1    0      0
## 174      0      0    1    1     17     0    0     1      0   0    0      0
## 175      1      0    1    1      3     0    0     0      0   0    1      0
## 176      1      0    1    1      3     0    0     0      0   0    1      0
## 177      1      0    1    1     11     0    1     0      0   0    0      0
## 178      1      1    1    1      2     0    1     0      0   0    0      0
## 179      1      0    1    1      9     0    1     0      0   0    0      0
## 180      1      1    1    1     10     0    0     0      0   0    0      0
## 181      1      1    1    1     18     0    0     1      0   0    0      0
## 182      1      0    1    1      8     0    0     0      0   1    0      0
## 183      1      1    3    1      9     0    0     0      0   0    0      0
## 184      1      1    1    1     17     0    1     0      0   0    0      0
## 185      1      0    1    1     17     0    0     1      0   0    0      0
## 186      1      1    1    1      9     0    0     0      0   0    1      0
## 187      1      1    1    1     19     0    1     0      0   0    0      0
## 188      1      1    1    1     13     0    1     0      0   0    0      0
## 189      1      0    1    1     14     0    1     0      0   0    0      0
## 190      1      1    1    1      6     0    1     0      0   0    0      0
## 191      0      0    2    1     13     0    0     0      0   1    0      0
## 192      1      0    2    1     12     0    0     1      0   0    0      0
## 193      1      0    1    1     14     0    0     1      0   0    0      0
## 194      1      0    1    1     14     0    0     0      0   0    0      0
## 195      1      1    1    1     14     0    0     0      0   0    0      1
## 196      1      1    1    1      7     0    0     1      0   0    0      0
## 197      1      0    1    1     19     0    1     0      0   0    0      0
## 198      1      0    1    1     16     0    1     0      0   0    0      0
## 199      0      1    1    1     18     0    1     0      0   0    0      0
## 200      1      1    2    1     14     0    1     0      0   0    0      0
## 201      1      0    1    1     17     0    0     0      0   1    0      0
## 202      1      1    1    1      5     0    0     0      0   0    0      0
## 203      1      1    1    1      9     0    1     0      0   0    0      0
## 204      1      0    1    1     14     0    0     1      0   0    0      0
## 205      1      1    1    1     17     0    0     0      0   0    0      1
## 206      0      0    1    1      7     1    0     0      0   0    0      0
## 207      1      0    1    1     19     0    0     1      0   0    0      0
## 208      0      0    1    1     18     0    0     0      0   0    0      0
## 209      1      0    1    0      9     0    1     0      0   0    0      0
## 210      1      1    1    1     18     0    1     0      0   0    0      0
## 211      1      0    1    1     14     0    0     0      0   0    0      1
## 212      1      1    1    1      6     0    0     0      0   0    1      0
## 213      1      0    1    0      7     0    0     0      0   0    0      1
## 214      1      0    1    1      6     0    1     0      0   0    0      0
## 215      0      0    1    0     14     0    1     0      0   0    0      0
## 216      1      1    1    1      2     0    0     0      0   0    0      0
## 217      1      1    1    1     16     0    0     0      0   1    0      0
## 218      1      0    1    0     15     0    0     1      0   0    0      0
## 219      1      1    1    0      2     0    0     1      0   0    0      0
## 220      0      1    1    0     18     0    0     1      0   0    0      0
## 221      0      0    1    1      2     0    1     0      0   0    0      0
## 222      1      0    2    1     17     0    0     0      1   0    0      0
## 223      1      1    1    1     17     0    0     0      0   1    0      0
## 224      1      0    3    0     15     0    0     0      0   0    1      0
## 225      0      0    1    0     17     0    0     0      1   0    0      0
## 226      1      1    1    1     15     0    1     0      0   0    0      0
## 227      1      0    1    1     11     0    0     0      0   0    1      0
## 228      1      0    3    1     18     0    1     0      0   0    0      0
## 229      1      1    1    1     17     0    1     0      0   0    0      0
## 230      1      0    1    1     20     0    0     0      0   0    0      0
## 231      1      0    1    1     19     0    0     0      0   0    0      1
## 232      1      0    1    1     19     0    0     0      0   0    0      1
## 233      1      1    1    1      2     0    1     0      0   0    0      0
## 234      0      1    1    1      5     0    0     1      0   0    0      0
## 235      1      1    1    0     13     0    1     0      0   0    0      0
## 236      1      0    1    1     16     0    1     0      0   0    0      0
## 237      1      0    1    1      4     0    1     0      0   0    0      0
## 238      1      1    1    1      3     0    0     0      0   0    0      0
## 239      1      1    1    1     12     0    1     0      0   0    0      0
## 240      1      0    1    1     16     0    1     0      0   0    0      0
## 241      1      0    1    0     18     0    0     0      0   0    0      0
## 242      1      1    1    1      6     0    0     0      0   0    0      0
## 243      1      1    1    0      7     0    0     0      0   0    0      0
## 244      1      1    1    1     17     0    1     0      0   0    0      0
## 245      1      0    1    1     17     0    0     0      0   1    0      0
## 246      1      1    1    1     17     0    0     1      0   0    0      0
## 247      1      1    1    1     17     0    0     0      0   0    1      0
## 248      1      1    1    1     13     1    0     0      0   0    0      0
## 249      1      0    3    0      5     0    0     0      0   0    1      0
## 250      1      1    1    0     19     0    0     0      0   1    0      0
## 251      1      1    1    1      3     0    1     0      0   0    0      0
## 252      1      1    1    1     13     0    0     0      0   0    1      0
## 253      1      1    1    1     12     0    0     0      0   1    0      0
## 254      1      1    1    0      7     0    0     0      0   0    0      0
## 255      1      0    1    1      7     1    0     0      0   0    0      0
## 256      1      1    3    1     13     0    0     0      0   0    0      0
## 257      1      1    1    0     17     0    1     0      0   0    0      0
## 258      1      1    1    0     17     0    0     0      1   0    0      0
## 259      1      1    1    1      6     0    0     0      0   1    0      0
## 260      1      1    1    1     13     0    1     0      0   0    0      0
## 261      1      0    1    1     13     1    0     0      0   0    0      0
## 262      1      0    1    0     17     0    1     0      0   0    0      0
## 263      0      1    1    0     17     0    0     0      0   0    0      0
## 264      1      1    1    1      7     0    1     0      0   0    0      0
## 265      1      0    2    1     13     0    0     0      0   0    0      0
## 266      1      0    1    1     17     1    0     0      0   0    0      0
## 267      1      1    1    1     14     0    1     0      0   0    0      0
## 268      1      0    1    1      9     0    0     1      0   0    0      0
## 269      1      1    1    0      7     1    0     0      0   0    0      0
## 270      1      0    1    1     18     0    1     0      0   0    0      0
## 271      1      0    1    1     17     0    1     0      0   0    0      0
## 272      1      1    1    1      6     1    0     0      0   0    0      0
## 273      1      0    3    1     20     0    0     0      0   0    1      0
## 274      0      1    1    1     14     1    0     0      0   0    0      0
## 275      1      0    1    0     15     0    0     0      0   0    1      0
## 276      1      0    2    1      9     1    0     0      0   0    0      0
## 277      1      1    3    1      3     0    1     0      0   0    0      0
## 278      1      0    1    1     12     0    1     0      0   0    0      0
## 279      1      1    1    0      8     0    0     1      0   0    0      0
## 280      1      1    1    1     17     0    0     0      0   0    1      0
## 281      1      0    1    0     10     0    0     1      0   0    0      0
## 282      1      0    3    1      8     0    0     1      0   0    0      0
## 283      1      1    1    1     20     0    1     0      0   0    0      0
## 284      1      1    3    1      8     0    0     1      0   0    0      0
## 285      1      0    1    0      2     1    0     0      0   0    0      0
## 286      1      1    1    1     11     0    1     0      0   0    0      0
## 287      1      1    1    1      8     0    0     1      0   0    0      0
## 288      1      0    1    1     18     0    1     0      0   0    0      0
## 289      0      1    1    1     12     0    1     0      0   0    0      0
## 290      1      0    1    1      7     0    1     0      0   0    0      0
## 291      1      1    2    1     18     0    0     0      0   0    1      0
## 292      1      0    1    1     16     0    0     1      0   0    0      0
## 293      1      1    1    1     17     1    0     0      0   0    0      0
## 294      1      0    1    1      8     0    0     0      0   0    1      0
## 295      0      0    1    1     11     0    0     1      0   0    0      0
## 296      1      0    1    1      9     0    1     0      0   0    0      0
## 297      1      0    2    0      6     0    1     0      0   0    0      0
## 298      1      0    1    1     12     0    1     0      0   0    0      0
## 299      0      1    1    1     13     0    1     0      0   0    0      0
## 300      1      1    1    1      5     0    0     0      0   0    0      0
## 301      1      1    1    1     18     0    0     0      0   0    1      0
## 302      1      1    1    1     11     0    0     0      1   0    0      0
## 303      0      0    1    1     11     0    1     0      0   0    0      0
## 304      1      0    1    1     15     0    0     0      0   0    0      0
## 305      1      0    1    1      4     0    0     0      0   0    1      0
## 306      1      1    1    0     15     0    0     1      0   0    0      0
## 307      1      0    1    1     12     0    1     0      0   0    0      0
## 308      1      1    1    1     17     0    0     1      0   0    0      0
## 309      1      1    3    1      6     0    0     0      0   1    0      0
## 310      1      1    2    1     16     0    1     0      0   0    0      0
## 311      1      1    1    1     12     0    0     1      0   0    0      0
## 312      0      1    2    0     17     0    1     0      0   0    0      0
## 313      0      1    1    1     17     0    0     0      0   0    0      0
## 314      1      0    1    1      4     0    1     0      0   0    0      0
## 315      1      0    1    1     14     1    0     0      0   0    0      0
## 316      1      0    1    1      3     0    0     0      0   1    0      0
## 317      1      0    1    0      1     0    1     0      0   0    0      0
## 318      1      0    1    1     17     0    0     1      0   0    0      0
## 319      1      1    1    0     10     1    0     0      0   0    0      0
## 320      1      0    1    0     12     1    0     0      0   0    0      0
## 321      1      0    1    0     13     0    0     0      0   1    0      0
## 322      1      1    1    1      5     0    0     0      0   0    0      0
## 323      1      1    1    1     13     0    0     1      0   0    0      0
## 324      1      1    1    1     12     0    1     0      0   0    0      0
## 325      0      0    1    0     17     0    0     0      0   0    0      0
## 326      1      0    1    1      6     0    0     0      0   0    0      0
## 327      0      1    1    1      5     0    0     0      0   0    0      0
## 328      1      1    2    1      5     0    0     1      0   0    0      0
## 329      1      1    1    0      4     0    1     0      0   0    0      0
## 330      1      0    1    0     15     0    0     0      0   1    0      0
## 331      0      1    1    1     17     0    0     0      0   0    1      0
## 332      1      0    1    1     15     0    1     0      0   0    0      0
## 333      1      0    1    0     16     0    0     1      0   0    0      0
## 334      1      0    1    0      9     0    0     0      0   0    0      0
## 335      1      0    1    1     19     0    1     0      0   0    0      0
## 336      1      1    1    0     15     0    0     0      1   0    0      0
## 337      1      0    1    1      4     0    0     0      1   0    0      0
## 338      1      0    1    1     15     0    0     1      0   0    0      0
## 339      1      0    1    1      7     0    0     0      0   1    0      0
## 340      1      1    1    1     17     0    0     0      0   0    0      0
## 341      1      1    1    1      5     0    1     0      0   0    0      0
## 342      1      0    1    1      4     0    1     0      0   0    0      0
## 343      1      0    1    1     14     0    0     0      0   0    0      0
## 344      1      0    1    1      2     0    1     0      0   0    0      0
## 345      0      0    1    1     19     0    0     0      0   1    0      0
## 346      1      1    1    1      7     0    1     0      0   0    0      0
## 347      1      0    1    1     17     0    0     0      0   0    1      0
## 348      1      1    1    1     17     0    0     1      0   0    0      0
## 349      0      1    1    1     13     0    0     0      0   1    0      0
## 350      1      1    1    1     17     0    1     0      0   0    0      0
## 351      0      1    1    1      5     0    1     0      0   0    0      0
## 352      1      1    1    1     13     0    0     0      0   0    0      0
## 353      0      0    2    1     20     0    0     1      0   0    0      0
## 354      1      0    1    0     16     0    1     0      0   0    0      0
## 355      1      1    1    1      3     0    0     0      0   1    0      0
## 356      1      1    1    1      8     0    0     1      0   0    0      0
## 357      0      1    2    0      1     0    0     1      0   0    0      0
## 358      1      0    1    1     17     0    1     0      0   0    0      0
## 359      1      0    1    1      6     0    0     1      0   0    0      0
## 360      1      0    3    1     14     0    0     0      0   0    0      0
## 361      1      0    1    1     11     0    1     0      0   0    0      0
##     Purple Closed_Eyes Normal_Eyes Eyeglasses
## 1        0           1           0          0
## 2        1           0           1          0
## 3        0           0           1          0
## 4        0           0           0          1
## 5        1           1           0          0
## 6        0           0           0          1
## 7        0           1           0          0
## 8        0           0           0          1
## 9        0           1           0          0
## 10       0           0           1          0
## 11       0           0           1          0
## 12       0           0           0          1
## 13       0           1           0          0
## 14       0           0           1          0
## 15       0           0           0          1
## 16       0           0           0          1
## 17       1           0           1          0
## 18       0           0           1          0
## 19       0           1           0          0
## 20       0           0           1          0
## 21       0           0           1          0
## 22       0           0           1          0
## 23       1           0           1          0
## 24       0           0           0          1
## 25       0           1           0          0
## 26       0           0           0          1
## 27       0           0           1          0
## 28       0           0           1          0
## 29       0           1           0          0
## 30       0           1           0          0
## 31       0           0           1          0
## 32       0           1           0          0
## 33       0           0           1          0
## 34       0           0           0          1
## 35       0           1           0          0
## 36       1           0           1          0
## 37       0           1           0          0
## 38       0           0           1          0
## 39       0           1           0          0
## 40       0           1           0          0
## 41       0           1           0          0
## 42       0           1           0          0
## 43       0           0           1          0
## 44       0           0           1          0
## 45       1           0           1          0
## 46       0           0           1          0
## 47       1           0           1          0
## 48       0           0           1          0
## 49       0           0           1          0
## 50       0           0           1          0
## 51       1           1           0          0
## 52       0           0           0          1
## 53       0           0           1          0
## 54       1           1           0          0
## 55       0           1           0          0
## 56       0           0           0          1
## 57       0           0           0          1
## 58       0           1           0          0
## 59       0           0           1          0
## 60       0           1           0          0
## 61       0           1           0          0
## 62       1           1           0          0
## 63       0           0           1          0
## 64       0           1           0          0
## 65       0           0           1          0
## 66       0           1           0          0
## 67       0           1           0          0
## 68       0           1           0          0
## 69       0           1           0          0
## 70       0           0           1          0
## 71       0           0           1          0
## 72       0           1           0          0
## 73       0           1           0          0
## 74       0           1           0          0
## 75       0           0           0          1
## 76       0           1           0          0
## 77       0           0           1          0
## 78       0           0           1          0
## 79       0           0           1          0
## 80       1           1           0          0
## 81       0           1           0          0
## 82       0           0           1          0
## 83       0           0           1          0
## 84       0           1           0          0
## 85       0           0           1          0
## 86       0           0           1          0
## 87       0           0           1          0
## 88       0           1           0          0
## 89       0           0           1          0
## 90       0           1           0          0
## 91       0           1           0          0
## 92       0           0           1          0
## 93       0           1           0          0
## 94       0           0           1          0
## 95       0           1           0          0
## 96       0           0           0          1
## 97       0           0           1          0
## 98       0           0           1          0
## 99       0           0           0          1
## 100      0           0           1          0
## 101      0           0           0          1
## 102      0           1           0          0
## 103      0           1           0          0
## 104      0           1           0          0
## 105      0           0           1          0
## 106      0           0           1          0
## 107      0           1           0          0
## 108      0           1           0          0
## 109      0           1           0          0
## 110      0           0           1          0
## 111      1           0           0          1
## 112      0           0           0          1
## 113      0           1           0          0
## 114      0           0           0          1
## 115      0           0           1          0
## 116      0           1           0          0
## 117      0           0           1          0
## 118      0           1           0          0
## 119      0           0           1          0
## 120      0           0           1          0
## 121      0           1           0          0
## 122      1           0           1          0
## 123      0           0           1          0
## 124      0           0           1          0
## 125      0           0           1          0
## 126      0           1           0          0
## 127      0           0           1          0
## 128      0           0           1          0
## 129      1           0           1          0
## 130      0           0           0          1
## 131      0           0           1          0
## 132      0           1           0          0
## 133      0           0           1          0
## 134      1           0           1          0
## 135      0           0           0          1
## 136      0           1           0          0
## 137      0           0           1          0
## 138      0           1           0          0
## 139      0           0           1          0
## 140      1           0           1          0
## 141      0           0           1          0
## 142      0           0           1          0
## 143      0           1           0          0
## 144      0           0           1          0
## 145      0           0           1          0
## 146      0           1           0          0
## 147      0           0           1          0
## 148      0           0           1          0
## 149      0           0           1          0
## 150      0           1           0          0
## 151      0           1           0          0
## 152      0           1           0          0
## 153      0           1           0          0
## 154      0           0           1          0
## 155      0           0           1          0
## 156      0           1           0          0
## 157      1           1           0          0
## 158      0           0           1          0
## 159      0           1           0          0
## 160      0           0           0          1
## 161      0           0           1          0
## 162      0           0           1          0
## 163      0           0           0          1
## 164      1           1           0          0
## 165      1           1           0          0
## 166      1           1           0          0
## 167      0           0           1          0
## 168      0           1           0          0
## 169      0           0           1          0
## 170      0           1           0          0
## 171      0           1           0          0
## 172      1           0           1          0
## 173      0           0           1          0
## 174      0           0           1          0
## 175      0           0           1          0
## 176      0           0           0          1
## 177      0           0           0          1
## 178      0           1           0          0
## 179      0           0           1          0
## 180      1           1           0          0
## 181      0           1           0          0
## 182      0           1           0          0
## 183      1           0           1          0
## 184      0           0           1          0
## 185      0           0           0          1
## 186      0           0           1          0
## 187      0           0           1          0
## 188      0           0           0          1
## 189      0           1           0          0
## 190      0           1           0          0
## 191      0           1           0          0
## 192      0           0           0          1
## 193      0           0           0          1
## 194      1           1           0          0
## 195      0           1           0          0
## 196      0           0           0          1
## 197      0           0           1          0
## 198      0           0           1          0
## 199      0           0           0          1
## 200      0           0           0          1
## 201      0           0           1          0
## 202      1           0           1          0
## 203      0           0           1          0
## 204      0           1           0          0
## 205      0           0           0          1
## 206      0           1           0          0
## 207      0           0           1          0
## 208      1           1           0          0
## 209      0           1           0          0
## 210      0           0           1          0
## 211      0           1           0          0
## 212      0           0           1          0
## 213      0           0           1          0
## 214      0           0           0          1
## 215      0           0           0          1
## 216      1           1           0          0
## 217      0           1           0          0
## 218      0           0           0          1
## 219      0           0           1          0
## 220      0           0           0          1
## 221      0           0           1          0
## 222      0           0           0          1
## 223      0           0           1          0
## 224      0           0           1          0
## 225      0           0           1          0
## 226      0           1           0          0
## 227      0           0           1          0
## 228      0           1           0          0
## 229      0           0           1          0
## 230      1           1           0          0
## 231      0           0           1          0
## 232      0           1           0          0
## 233      0           1           0          0
## 234      0           1           0          0
## 235      0           1           0          0
## 236      0           0           0          1
## 237      0           0           1          0
## 238      1           0           1          0
## 239      0           0           0          1
## 240      0           1           0          0
## 241      1           0           0          1
## 242      1           0           1          0
## 243      1           0           1          0
## 244      0           0           1          0
## 245      0           0           1          0
## 246      0           1           0          0
## 247      0           0           1          0
## 248      0           0           1          0
## 249      0           1           0          0
## 250      0           1           0          0
## 251      0           1           0          0
## 252      0           0           1          0
## 253      0           0           0          1
## 254      1           1           0          0
## 255      0           1           0          0
## 256      1           0           1          0
## 257      0           0           0          1
## 258      0           1           0          0
## 259      0           1           0          0
## 260      0           0           0          1
## 261      0           0           1          0
## 262      0           0           0          1
## 263      1           0           1          0
## 264      0           0           1          0
## 265      1           0           1          0
## 266      0           0           1          0
## 267      0           1           0          0
## 268      0           1           0          0
## 269      0           0           1          0
## 270      0           0           1          0
## 271      0           0           0          1
## 272      0           1           0          0
## 273      0           1           0          0
## 274      0           0           1          0
## 275      0           0           1          0
## 276      0           0           0          1
## 277      0           0           0          1
## 278      0           0           1          0
## 279      0           0           1          0
## 280      0           0           1          0
## 281      0           0           0          1
## 282      0           1           0          0
## 283      0           0           1          0
## 284      0           1           0          0
## 285      0           1           0          0
## 286      0           0           0          1
## 287      0           1           0          0
## 288      0           1           0          0
## 289      0           0           0          1
## 290      0           1           0          0
## 291      0           1           0          0
## 292      0           0           1          0
## 293      0           1           0          0
## 294      0           1           0          0
## 295      0           0           1          0
## 296      0           0           0          1
## 297      0           0           1          0
## 298      0           0           1          0
## 299      0           0           1          0
## 300      1           1           0          0
## 301      0           1           0          0
## 302      0           0           1          0
## 303      0           1           0          0
## 304      1           0           1          0
## 305      0           0           1          0
## 306      0           0           1          0
## 307      0           1           0          0
## 308      0           1           0          0
## 309      0           0           1          0
## 310      0           0           1          0
## 311      0           1           0          0
## 312      0           0           1          0
## 313      1           0           1          0
## 314      0           0           1          0
## 315      0           0           1          0
## 316      0           1           0          0
## 317      0           0           1          0
## 318      0           0           0          1
## 319      0           0           0          1
## 320      0           0           1          0
## 321      0           1           0          0
## 322      1           1           0          0
## 323      0           0           0          1
## 324      0           1           0          0
## 325      1           0           0          1
## 326      1           0           1          0
## 327      1           1           0          0
## 328      0           0           1          0
## 329      0           1           0          0
## 330      0           0           1          0
## 331      0           0           1          0
## 332      0           1           0          0
## 333      0           0           0          1
## 334      1           1           0          0
## 335      0           0           1          0
## 336      0           0           1          0
## 337      0           1           0          0
## 338      0           1           0          0
## 339      0           1           0          0
## 340      1           1           0          0
## 341      0           0           1          0
## 342      0           1           0          0
## 343      1           0           1          0
## 344      0           1           0          0
## 345      0           0           1          0
## 346      0           0           1          0
## 347      0           1           0          0
## 348      0           0           1          0
## 349      0           0           1          0
## 350      0           1           0          0
## 351      0           0           1          0
## 352      1           0           1          0
## 353      0           0           1          0
## 354      0           0           0          1
## 355      0           1           0          0
## 356      0           0           1          0
## 357      0           0           1          0
## 358      0           0           1          0
## 359      0           0           0          1
## 360      1           0           0          1
## 361      0           1           0          0

#5 Examine if you can predict gender from other variables. Use logistic regression to examine which variables among Math, Verbal, WT, HT, Compu, TV, Phone, Shoe, Smoke, and Sibs, which will significantly contribute to predict the gender.

vectorOfDependentVariables <- c("Math", "Verbal", "WT", "HT", "Compu", "TV", "Phone", "Shoe", "Smoke", "Sibs")
# Define the formula
formula <- formula("gender ~ Math + Verbal + WT + HT + Compu + TV + Phone + Shoe + Smoke + Sibs")

# Fit the logistic regression model for each variable
listOfGlms <- lapply(vectorOfDependentVariables, function(x) {
  glm(reformulate(x, "Sex"), data = newSurvey_Data, family = binomial)
})
listOfGlms
## [[1]]
## 
## Call:  glm(formula = reformulate(x, "Sex"), family = binomial, data = newSurvey_Data)
## 
## Coefficients:
## (Intercept)         Math  
##   -3.255745     0.004401  
## 
## Degrees of Freedom: 360 Total (i.e. Null);  359 Residual
## Null Deviance:       474.1 
## Residual Deviance: 466   AIC: 470
## 
## [[2]]
## 
## Call:  glm(formula = reformulate(x, "Sex"), family = binomial, data = newSurvey_Data)
## 
## Coefficients:
## (Intercept)       Verbal  
##    0.601235    -0.001948  
## 
## Degrees of Freedom: 360 Total (i.e. Null);  359 Residual
## Null Deviance:       474.1 
## Residual Deviance: 472.4     AIC: 476.4
## 
## [[3]]
## 
## Call:  glm(formula = reformulate(x, "Sex"), family = binomial, data = newSurvey_Data)
## 
## Coefficients:
## (Intercept)           WT  
##   -10.23777      0.06622  
## 
## Degrees of Freedom: 360 Total (i.e. Null);  359 Residual
## Null Deviance:       474.1 
## Residual Deviance: 314.3     AIC: 318.3
## 
## [[4]]
## 
## Call:  glm(formula = reformulate(x, "Sex"), family = binomial, data = newSurvey_Data)
## 
## Coefficients:
## (Intercept)           HT  
##    -47.5649       0.6961  
## 
## Degrees of Freedom: 360 Total (i.e. Null);  359 Residual
## Null Deviance:       474.1 
## Residual Deviance: 240.5     AIC: 244.5
## 
## [[5]]
## 
## Call:  glm(formula = reformulate(x, "Sex"), family = binomial, data = newSurvey_Data)
## 
## Coefficients:
## (Intercept)        Compu  
##   -0.824534     0.003262  
## 
## Degrees of Freedom: 360 Total (i.e. Null);  359 Residual
## Null Deviance:       474.1 
## Residual Deviance: 467.9     AIC: 471.9
## 
## [[6]]
## 
## Call:  glm(formula = reformulate(x, "Sex"), family = binomial, data = newSurvey_Data)
## 
## Coefficients:
## (Intercept)           TV  
##   -0.688779     0.002419  
## 
## Degrees of Freedom: 360 Total (i.e. Null);  359 Residual
## Null Deviance:       474.1 
## Residual Deviance: 472   AIC: 476
## 
## [[7]]
## 
## Call:  glm(formula = reformulate(x, "Sex"), family = binomial, data = newSurvey_Data)
## 
## Coefficients:
## (Intercept)        Phone  
##   -0.383381    -0.004853  
## 
## Degrees of Freedom: 360 Total (i.e. Null);  359 Residual
## Null Deviance:       474.1 
## Residual Deviance: 471.8     AIC: 475.8
## 
## [[8]]
## 
## Call:  glm(formula = reformulate(x, "Sex"), family = binomial, data = newSurvey_Data)
## 
## Coefficients:
## (Intercept)         Shoe  
##     -16.594        1.703  
## 
## Degrees of Freedom: 360 Total (i.e. Null);  359 Residual
## Null Deviance:       474.1 
## Residual Deviance: 206   AIC: 210
## 
## [[9]]
## 
## Call:  glm(formula = reformulate(x, "Sex"), family = binomial, data = newSurvey_Data)
## 
## Coefficients:
## (Intercept)        Smoke  
##     -0.6372       0.4336  
## 
## Degrees of Freedom: 360 Total (i.e. Null);  359 Residual
## Null Deviance:       474.1 
## Residual Deviance: 471.5     AIC: 475.5
## 
## [[10]]
## 
## Call:  glm(formula = reformulate(x, "Sex"), family = binomial, data = newSurvey_Data)
## 
## Coefficients:
## (Intercept)         Sibs  
##    -0.66183      0.05839  
## 
## Degrees of Freedom: 360 Total (i.e. Null);  359 Residual
## Null Deviance:       474.1 
## Residual Deviance: 473.5     AIC: 477.5

Given these results,

#6 Try to build a model based on logistic regression and identify which variables among all the available variables which most likely will significantly contribute to predict the gender.

# Fit logistic regression model
mylogit <- glm(sex_fact ~ Math + Verbal + WT + HT + Compu + TV + Phone + Shoe + Smoke + Sibs + MomHT + DadHT + Black + Blue + Green + Orange + Red + Pink + Yellow + Purple + Credits + Year + Live + Exer + Phone + Sleep + Age + MomAge + DadAge + Pierced + Closed_Eyes + Normal_Eyes + Eyeglasses + Earned + Cash + Handed + Bkfst. + Veg. + Cell,
               data = newSurvey_Data, family = "binomial")
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
# View model summary
summary(mylogit)
## 
## Call:
## glm(formula = sex_fact ~ Math + Verbal + WT + HT + Compu + TV + 
##     Phone + Shoe + Smoke + Sibs + MomHT + DadHT + Black + Blue + 
##     Green + Orange + Red + Pink + Yellow + Purple + Credits + 
##     Year + Live + Exer + Phone + Sleep + Age + MomAge + DadAge + 
##     Pierced + Closed_Eyes + Normal_Eyes + Eyeglasses + Earned + 
##     Cash + Handed + Bkfst. + Veg. + Cell, family = "binomial", 
##     data = newSurvey_Data)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.6385  -0.0003   0.0000   0.0000   3.6307  
## 
## Coefficients: (2 not defined because of singularities)
##               Estimate Std. Error z value Pr(>|z|)  
## (Intercept) -10.068307  44.175084  -0.228   0.8197  
## Math         -0.001621   0.015001  -0.108   0.9139  
## Verbal        0.025386   0.016321   1.555   0.1198  
## WT            0.042106   0.074344   0.566   0.5711  
## HT            1.565239   1.003456   1.560   0.1188  
## Compu        -0.019821   0.012555  -1.579   0.1144  
## TV           -0.005010   0.021288  -0.235   0.8140  
## Phone        -0.019954   0.026209  -0.761   0.4465  
## Shoe          3.359734   1.433091   2.344   0.0191 *
## Smoke         6.943374   5.106434   1.360   0.1739  
## Sibs         -0.080017   0.500364  -0.160   0.8729  
## MomHT        -0.856080   0.545248  -1.570   0.1164  
## DadHT        -1.783086   1.000987  -1.781   0.0749 .
## Black         6.602588   5.027849   1.313   0.1891  
## Blue          0.407550   2.321548   0.176   0.8606  
## Green        -6.076506   3.991131  -1.523   0.1279  
## Orange       -4.850944  54.471558  -0.089   0.9290  
## Red          -2.521779   4.089201  -0.617   0.5374  
## Pink        -20.920471  47.894804  -0.437   0.6623  
## Yellow       -2.650880  75.638244  -0.035   0.9720  
## Purple              NA         NA      NA       NA  
## Credits       0.144409   0.818371   0.176   0.8599  
## Year2         2.379161   2.681244   0.887   0.3749  
## Year3         3.115139   3.941677   0.790   0.4293  
## Year4         2.713674   5.340098   0.508   0.6113  
## Yearother     4.402872  49.096366   0.090   0.9285  
## Live         -0.336637   1.917102  -0.176   0.8606  
## Exer          0.029214   0.022863   1.278   0.2013  
## Sleep         1.855716   1.265886   1.466   0.1427  
## Age           1.490188   1.356972   1.098   0.2721  
## MomAge       -0.039140   0.294517  -0.133   0.8943  
## DadAge        0.039431   0.288537   0.137   0.8913  
## Pierced     -14.156565   7.138689  -1.983   0.0474 *
## Closed_Eyes  -8.381756   5.074489  -1.652   0.0986 .
## Normal_Eyes  -4.583463   3.158740  -1.451   0.1468  
## Eyeglasses          NA         NA      NA       NA  
## Earned        0.303608   0.324196   0.936   0.3490  
## Cash         -0.034572   0.023289  -1.485   0.1377  
## Handed        1.805666   3.117667   0.579   0.5625  
## Bkfst.       -8.753697   5.143991  -1.702   0.0888 .
## Veg.          2.591541   1.905665   1.360   0.1739  
## Cell         -1.859158   2.392098  -0.777   0.4370  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 474.066  on 360  degrees of freedom
## Residual deviance:  41.129  on 321  degrees of freedom
## AIC: 121.13
## 
## Number of Fisher Scoring iterations: 14

Given our results, we found that Shoe Size and Percsing were the best predictors for gender. We came to this conclusion because their values are statistically significant, indicating there is some correlation between them in some way.